# Subtrajectory Clustering: Finding Set Covers for Set Systems of Subcurves

## DOI:

https://doi.org/10.57717/cgt.v2i1.7## Abstract

We study subtrajectory clustering under the Fr\'echet distance. Given one or more trajectories, the task is to split the trajectories into several parts, such that the parts have a good clustering structure. We approach this problem via a new set cover formulation, which we think provides a natural formalization of the problem as it is studied in many applications. Given a polygonal curve $P$ with $n$ vertices in fixed dimension, integers $k$, $\ell \geq 1$, and a real value $\Delta > 0$, the goal is to find $k$ center curves of complexity at most $\ell$ such that every point on $P$ is covered by a subtrajectory that has small Fr\'echet distance to one of the $k$ center curves ($\leq \Delta$). In many application scenarios, one is interested in finding clusters of small complexity, which is controlled by the parameter $\ell$. Our main result is a bicriterial approximation algorithm: if there exists a solution for given parameters $k$, $\ell$, and $\Delta$, then our algorithm finds a set of $k'$ center curves of complexity at most $\ell$ with covering radius $\Delta'$ with $k' \in O( k \ell^2 \log (k \ell))$, and $\Delta'\leq 19 \Delta$. Moreover, within these approximation bounds, we can minimize $k$ while keeping the other parameters fixed. If $\ell$ is a constant independent of $n$, then, the approximation factor for the number of clusters $k$ is $O(\log k)$ and the approximation factor for the radius $\Delta$ is constant. In this case, the algorithm has expected running time in $ \tilde{O}\left( k m^2 + mn\right)$ and uses space in $O(n+m)$, where $m=\lceil\frac{L}{\Delta}\rceil$ and $L$ is the total arclength of the curve $P$.

## Downloads

## Published

## How to Cite

*Computing in Geometry and Topology*,

*2*(1), 1:1–1:48. https://doi.org/10.57717/cgt.v2i1.7

## License

Copyright (c) 2023 Frederik Brüning, Hugo Akitaya, Erin Chambers, Anne Driemel

This work is licensed under a Creative Commons Attribution 4.0 International License.

Authors who publish with this journal agree to the following terms:

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.

Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.

Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).