The Tripartite-Circle Crossing Number of Graphs With Two Small Partition Classes

Authors

DOI:

https://doi.org/10.57717/cgt.v3i1.63

Abstract

A tripartite-circle drawing of a tripartite graph is a drawing in the plane, where each part of a vertex partition is placed on one of three disjoint circles, and the edges do not cross the circles. The tripartite-circle crossing number of a tripartite graph is the minimum number of edge crossings among all its tripartite-circle drawings. We determine the exact value of the tripartite-circle crossing number of Ka,b,n, where a, b ≤ 2.

Downloads

Published

2024-11-07

How to Cite

Camacho, C., Fernández-Merchant, S., Jelić Milutinović, M., Kirsch, R., Kleist, L., Matson, E., & White, J. (2024). The Tripartite-Circle Crossing Number of Graphs With Two Small Partition Classes. Computing in Geometry and Topology, 3(1), 9:1–9:21. https://doi.org/10.57717/cgt.v3i1.63

Issue

Section

Original Research Articles

Categories