Geometric Spanning Trees Minimizing the Wiener Index
DOI:
https://doi.org/10.57717/cgt.v3i1.52Abstract
The Wiener index of a network, introduced by the chemist Harry Wiener, is the sum of distances between all pairs of nodes in the network. This index, originally used in chemical graph representations of the non-hydrogen atoms of a molecule, is considered to be a fundamental and useful network descriptor. We study the problem of constructing geometric networks on point sets in Euclidean space that minimize the Wiener index: given a set P of n$points in Rd, the goal is to construct a network, spanning P and satisfying certain constraints, that minimizes the Wiener index among the allowable class of spanning networks.
In this work, we focus mainly on spanning networks that are trees and we focus on problems in the plane (d = 2). We show that any spanning tree that minimizes the Wiener index has non-crossing edges in the plane. Then, we use this fact to devise an O(n4)-time algorithm that constructs a spanning tree of minimum Wiener index for points in convex position. We also prove that the problem of computing a spanning tree on P whose Wiener index is at most W, while having total (Euclidean) weight at most B, is NP-hard.
Computing a tree that minimizes the Wiener index has been studied in the area of communication networks, where it is known as the minimum routing cost spanning tree problem.
Downloads
Published
How to Cite
License
Copyright (c) 2024 Karim Abu Affash, Paz Carmi, Ori Luwisch, Joseph Mitchell
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).