Keeping it sparse: Computing Persistent Homology revisited
DOI:
https://doi.org/10.57717/cgt.v3i1.50Abstract
In this work, we study several variants of matrix reduction via Gaussian elimination that try to keep the reduced matrix sparse. The motivation comes from the growing field of topological data analysis where matrix reduction is the major subroutine to compute barcodes, the main invariant therein. We propose two novel variants of the standard algorithm, called swap and retrospective reductions. We test them on a large collection of data against other known variants to compare their efficiency, and we find that sometimes they provide a considerable speed-up. We also present novel output-sensitive bounds for the retrospective variant which better explain the discrepancy between the cubic worst-case complexity bound and the almost linear practical behavior of matrix reduction. Finally, we provide several constructions on which one of the variants performs strictly better than the others.
Downloads
Published
How to Cite
License
Copyright (c) 2024 Ulrich Bauer, Talha Bin Masood, Barbara Giunti, Guillaume Houry, Michael Kerber, Abhishek Rathod
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).