A Note on the Flip Distance between Non-crossing Spanning Trees
DOI:
https://doi.org/10.57717/cgt.v2i1.36Abstract
We consider spanning trees of n points in convex position whose edges are pairwise non-crossing. Applying a flip to such a tree consists in adding an edge and removing another so that the result is still a non-crossing spanning tree. Given two trees, we investigate the minimum number of flips required to transform one into the other. The naive 2n - Omega(1) upper bound stood for 25 years until a recent breakthrough from Aichholzer et al. yielding a 2n - Ω(log n) bound. We improve their result with a 2n - Ω(√n) upper bound, and we strengthen and shorten the proofs of several of their results.
Downloads
Published
How to Cite
License
Copyright (c) 2023 Nicolas Bousquet, Valentin Gledel, Jonathan Narboni, Théo Pierron
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).