Efficiently Stabbing Convex Polygons and Variants of the Hadwiger-Debrunner (p, q)-Theorem

Authors

DOI:

https://doi.org/10.57717/cgt.v1i1.18

Abstract

Hadwiger and Debrunner showed that for families of convex sets in Rd with the property that among any p of them some q have a common point, the whole family can be stabbed with p − q + 1 points if p ≥ q ≥ d + 1 and (d − 1)p < d(q − 1). This generalizes a classical result by Helly. We show how such a stabbing set can be computed for a family of convex polygons in the plane with a total of n vertices in O((p − q + 1)n4/3 log8 n( log log n)1/3 + np2) expected time. For polyhedra in R3, we get an algorithm running in O((p − q + 1)n5/2 log10 n(log log n)1/6 + np3) expected time. We also investigate other conditions on convex polygons for which our algorithm can find a fixed number of points stabbing them. Finally, we show that analogous results of the Hadwiger and Debrunner (p, q)-theorem hold in other settings, such as convex sets in Rd × Zk or abstract convex geometries.

Author Biography

Justin Dallant, Université libre de Bruxelles

PhD student in the Algorithms Research Group at ULB, Belgium.

Downloads

Published

2022-12-12

How to Cite

Dallant, J., & Schnider, P. (2022). Efficiently Stabbing Convex Polygons and Variants of the Hadwiger-Debrunner (p, q)-Theorem. Computing in Geometry and Topology, 1(1), 5:1–5:27. https://doi.org/10.57717/cgt.v1i1.18

Issue

Section

Original Research Articles

Categories