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Abstract
Machine learning and data mining techniques are effective tools to classify large amounts of data.
But they tend to preserve any inherent bias in the data, for example, with regards to gender or race.
Removing such bias from data or the learned representations is quite challenging. In this paper we
study a geometric problem which models a possible approach for bias removal. Our input is a set
of points P in Euclidean space Rd and each point is labeled with k binary-valued properties. A
priori we assume that it is “easy” to classify the data according to each property. Our goal is to
obstruct the classification according to one property by a suitable projection to a lower-dimensional
Euclidean space Rm (m < d), while classification according to all other properties remains easy.

What it means for classification to be easy depends on the classification model used. We first
consider classification by linear separability as employed by support vector machines. We use
Kirchberger’s Theorem to show that, under certain conditions, a simple projection to Rd−1 suffices
to eliminate the linear separability of one of the properties whilst maintaining the linear separability
of the other properties. We also study the problem of maximizing the linear “inseparability” of the
chosen property. Second, we consider more complex forms of separability and prove a connection
between the number of projections required to obstruct classification and the Helly-type properties
of such separabilities.
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1 Introduction

Classification is one of the most basic data analysis operators: given a (very) large set of
high-dimensional input data with a possibly large set of heterogeneous properties, we would
like to classify the data according to one or more of these properties to facilitate further
analysis and decision making. Machine learning and data mining techniques are frequently
employed in this setting, since they are effective tools to classify large datasets. However,
just as any data-driven techniques, they tend to preserve any bias inherent in the data,
for example, with regards to gender or race. Such bias arises from under-representation of
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2:2 Obstructing Classification via Projection

minority groups in the data or is caused by historical data, which reflect outdated societal
norms. Bias in the data might be inconsequential, for example in music recommendations,
but it can be harmful when classification algorithms are used to make life-changing decisions
on, for example, loans, recruitment, or parole [23].

Naturally, the identification and removal of bias receives a significant amount of attention,
although the problem is still far from solved. For example, Mehrabi et al. [19] provide a
taxonomy of fairness definitions and bias types. They list the biases caused by data and the
types of discrimination caused by machine learning techniques. Many approaches have been
considered to eliminate or reduce bias in machine learning models. Some researchers have
used a statistical approach to address this problem (e.g., [13]), while others focus on data
preprocessing or controlling the sampling to compensate for bias or under-representation
in the data (e.g., [2, 15]). Another approach is to use an additional (adversarial) machine
learning model to eliminate bias in the first model (e.g., [11, 18, 27]). One major problem
of attempting to eliminate bias (or increasing fairness) in machine learning is that it may
negatively affect the accuracy of the learned model. This trade-off has also been studied
extensively (e.g., [3, 25]).

We are particularly interested in data that is represented by vectors in high-dimensional
Euclidean space. Such data arises, for example, from word embeddings for textual data.
Several studies show that the bias present in the training corpora is also present in the
learned representation (e.g. [7, 8]). Abbasi et al. [1] recently introduced a geometric notion
of stereotyping. In this paper we follow the same premise that bias is in some form encoded
in the geometric or topological features of the high-dimensional vector representation and
that manipulating this geometry can remove the bias. This premise has been the basis for
many papers on algorithmic fairness (e.g., [11, 12, 26]).

Several papers investigate the theory that gender is captured in certain dimensions of
the data. Bolukbasi et al. [5] postulate that the bias manifests itself in specific “particularly
gendered” words and that equalizing distances to these special words removes bias. Zhao et
al. [28] devise a model which attempts to represent gender in one dimension which can be
removed after training to arrive at a (more) gender-neutral word representation. Bordia
and Bowman [6] remove bias by minimizing the projection of the embeddings on the gender
subspace (using a regularization term in the training process). Very recently, various
papers [9, 10, 14, 22] explored the direct use of projection to remove sensitive properties of
the data. In some cases the data is not projected completely, as removing sensitive properties
completely may negatively affect the quality of the model.

In this paper 1 we take a slightly more general point of view. We say that a property is
present in the data representation if it is “easy” to classify the data according to that property.
That is, a property (such as gender) can be described by more complicated geometric relations
than a subspace. Given the premise that the geometry of word embeddings encodes important
relations between the data, then any bias removal technique needs to preserve as much as
possible of these relations. Hence we investigate the use of projection to eliminate bias
while maintaining as many other relations as possible. We say that the relation of data
points with respect to specific properties is maintained by a projection, if it is still easy
to classify according to these properties after projection. Our paper explores how well
projection can obstruct classification according to a specific property (such as gender) for
certain classification models.

1A preliminary version of this work has appeared at 46th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2021).
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Problem statement. Our input is a set of n points P = {p1, . . . , pn} in general position
in Rd. For convenience we identify the points with their corresponding vector. We model the
various properties of the data (such as gender) as binary labels.2 Hence, for all points in P
we are also given k binary-valued properties, represented as functions ai : P → {−1, 1} for
1 ≤ i ≤ k. We denote the subset of points p ∈ P with ai(p) = 1 as P i+, and the subset of
points p ∈ P with ai(p) = −1 as P i− for 1 ≤ i ≤ k. For a point p ∈ P , we refer to the tuple
(a1(p), . . . , ak(p)) as the label of p. Note that there are 2k different possible labels. Generally
speaking, we do not know which specific properties a dataset has. However, to study the
influence of projection on all relevant properties of a dataset, we assume that these properties
are given.

The classification of a point according to a property ai is determining (predicting) the
value of the property ai of the point, given solely its coordinates. In this definition of
classification, the property values of the points cannot be used for the prediction. We
assume that it is “easy” to classify the points in P according to the properties by using
the point coordinates. Throughout the paper, we consider different definitions for what
is considered easy or difficult to classify. Our goal is to compute a projection P ′ of P to
lower dimensions such that the first property a1 becomes difficult to classify in P ′, and the
other properties a2, . . . , ak remain easy to classify in P ′. As a shorthand we use the notation
P− = P 1

− and P+ = P 1
+ for the point sets in which the special property a1 is set to −1

and +1, respectively. Similarly, we use the notation P ′− and P ′+ for the point sets P− and
P+ after projection. In most cases we will consider a projection along a single unit vector
w (‖w‖ = 1), mapping points in Rd to points in Rd−1. For a point pi ∈ P , we denote its
projection as p′i = pi − (pi · w)w, where (pi · w) denotes the dot product between the vectors
pi, w ∈ Rd. To assign coordinates to p′i in Rd−1, we need to establish a basis for the projected
space. We therefore often consider p′i to lie in the original space Rd, where the coordinates
of p′i are restricted to the hyperplane that is orthogonal to w and passes through the origin.
Sometimes we will consider projections along multiple vectors w1, . . . , wr. In that case we
assume that {wj}rj=1 form an orthonormal system, such that we can write the projection as
p′i = pi −

∑r
j=1(pi · wj)wj . Again, we assume that p′i still lies in Rd, but is restricted to the

(d− r)-dimensional flat that is orthogonal to w1, . . . , wr and passes through the origin.
We consider different models for defining what is easy or difficult to classify, resulting in

different computational problems. These models typically rely on a form of “separability”
between two point sets. For a specific definition of separability, using a slight abuse of
notation, we will often state that a property ai is separated in a point set P when we actually

Figure 1 Left: data points with two linearly-separable properties: shape and color. Middle: a
projection which keeps shape separated, but not color. Right: a projection with the opposite effect.

2Neither gender nor many other societally relevant properties are binary, however, we restrict ourselves
to binary properties to simplify our mathematical model.
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2:4 Obstructing Classification via Projection

mean that P i− and P i+ are separated (see Figure 1 for a simple example in R2). The specific
models, along with the relevant definitions, are described in detail in the respective sections.

Contributions and organization.
In Section 2 we consider linear separability as the classification model. We first show
that, if even one possible label is missing from P , then there may be no projection that
eliminates the linear separability of a1 whilst keeping the linear separability of the other
properties. On the other hand, if all possible labels are present in the point set, then we
show that it is always possible to achieve this goal.
In Section 3 we discuss a related question: given a measure to quantify how far removed
a labeled point set is from linear separability, how can we optimize this measure for a1
after projection? We show that the optimal projection can be computed efficiently under
certain specific conditions, but may be hard to compute efficiently in general.
In Section 4 we introduce (b, c)-separability, which is a generalization of linear separability.
Although a single projection is no longer sufficient to avoid (b, c)-separability of a1 after
projection, we show that, in general, the number of projections needed to achieve this is
linked to the Helly number of the respective separability predicate. We then establish
bounds on the Helly numbers of (b, c)-separability for specific values of b and c.

2 Linear separability

In this section we consider linear separability for classification. For a point set P and property
ai : P → {−1, 1}, we say that ai is easy to classify on P if P i− and P i+ are (strictly) linearly
separable; we say that ai is difficult to classify otherwise. Two point sets P and Q (P,Q ⊂ Rd)
are linearly separable if there exists a hyperplane H separating P from Q. The point sets
are strictly linearly separable if we can additionally require that none of the points lie on
H. Equivalently, the point sets P and Q are linearly separable if there exists a unit vector
v ∈ Rd and constant c ∈ R such that (v · p) ≤ c for all p ∈ P and (v · q) ≥ c for all q ∈ Q
(v is the normal vector of the hyperplane H). We say that P and Q are linearly separable
along v. If the inequalities can be strict, then the point sets are strictly linearly separable.

One of the machine learning techniques that uses linear separability for classification are
support vector machines (SVMs). SVMs compute the (optimal) hyperplane that separates
two classes in the training data (if linearly separable), and use that hyperplane for further
classifications. Linear separability is therefore a good first model to consider for classification.

Let CH(P ) denote the convex hull of a point set P . By definition, we have that x ∈ CH(P )
if and only if there exist coefficients λi ≥ 0 such that x =

∑n
i=1 λipi and

∑n
i=1 λi = 1. We

use the following basic results on convex geometry and linear algebra.

I Fact 1. Two point sets P and Q are linearly separable iff CH(P ) and CH(Q) are interior
disjoint. P and Q are strictly linearly separable iff CH(P ) ∩ CH(Q) = ∅.

I Observation 2. Let P ′ = {p′1, . . . , p′n} be the point set obtained from P = {p1, . . . , pn} by
projecting along a unit vector w. If x =

∑n
i=1 λipi (for λi ∈ R), then x′ = x− (w · x)w =∑n

i=1 λip
′
i. Specifically, if x ∈ CH(P ), then x′ ∈ CH(P ′).

I Lemma 3. Let P and Q be two point sets. If we project both P and Q along a unit vector
w to obtain P ′ and Q′, then P ′ and Q′ are not strictly linearly separable iff there exists a
line ` parallel to w that intersects both CH(P ) and CH(Q). If ` intersects the interior of
CH(P ) or CH(Q), then P ′ and Q′ are not linearly separable.
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w
`

P

Q

w
`

Figure 2 Line ` intersects CH(P ) and CH(Q); after projection the convex hulls intersect.

Proof. Assume that the line ` exists, and it contains xP ∈ CH(P ) and xQ ∈ CH(Q) (see
Figure 2). By construction, x′ = xP − (w · xP )w = xQ− (w · xQ)w. Hence, by Observation 2,
x′ ∈ CH(P ′) ∩ CH(Q′). Thus, by Fact 1, P ′ and Q′ are not strictly linearly separable.
For the other direction, choose x′ ∈ CH(P ′) ∩ CH(Q′). The line parallel to w and passing
through x′ must clearly intersect both CH(P ) and CH(Q). The extension to (non-strict)
linear separability is straightforward. J

Assume now that the properties a1, . . . , ak are strictly linearly separable in P . Can we
project P along a unit vector w so that a2, . . . , ak are still strictly linearly separable in
P ′, but a1 is not? We consider two variants: (1) separation preserving and (2) separability
preserving projections. The former preserves a fixed set of separating hyperplanes H2, . . . ,Hk

for properties a2, . . . , ak, the latter preserves only linear separability of a2, . . . , ak.
Lemma 4 proves that there exist point sets using only 2k−1 possible labels for which every

separability preserving projection also keeps a1 strictly linearly separable after projection.
The idea of the proof is to use the properties a2, . . . , ak to sufficiently restrict the direction
of a separability preserving projection to make it impossible for this projection to eliminate
the linear separability of a1. A simple example for d = k = 2 is shown in Figure 3.

(1, 0)

(0, 1)

ε

Figure 3 A point set with 5 points and 2 properties: a1 (color) and a2 (shape). To keep a2

linearly separable after projection, the projection vector w should be nearly vertical, but then a1

will also remain linearly separable.

I Lemma 4. For all k > 1 and d ≥ k, there exist point sets P in Rd with properties a1, . . . , ak
using 2k − 1 labels such that any separability preserving projection along a unit vector w also
keeps a1 strictly linearly separable after projection.

Proof. We first construct the point set P for arbitrary k and d = k. Consider the vertices of

CGT



2:6 Obstructing Classification via Projection

a (k − 1)-dimensional hypercube Cε with side length ε > 0 centered at the origin, for which
all nonzero coordinates lie in the first k − 1 dimensions of Rd. For each vertex p of Cε, set
the properties of p based on its coordinates (p1, . . . , pd): a1(p) = 1, and ai(p) = sgn(pi−1)
for 2 ≤ i ≤ k, where sgn(x) is the sign function. Next, create a copy of Cε (along with
the assigned properties) and place it around the coordinate (0, . . . , 0, 1) (see Figure 4 left).
Let the resulting point set be Q, and consider projecting Q along a unit vector w. Let
w = (w1, . . . , wd) and assume without loss of generality, that |w1| ≥ |wi| for all 2 ≤ i < k.
If |w1| > ε, then there always exists a line ` parallel to w that intersects both CH(Q2

−)
and CH(Q2

+). By Lemma 3 this would imply that a2 is not strictly linearly separable after
projection along w, so we may assume that |w1| ≤ ε for any separability preserving projection
(see Figure 4 middle).

Now consider a (k − 2)-dimensional flat H with the following properties: (1) it is not
parallel to one of the first k − 1 axes, (2) it lies in the first k − 1 dimensions of Rd (the other
coordinates are zero), and (3) the distance from the origin to H is 1 (see Figure 4 right).
Consider the orthants of the (k − 1)-dimensional subspace A spanned by the first k − 1 axes.
Based on the labels of the vertices of Cε, each orthant is associated with a label for the
properties a2, . . . , ak. Due to Property (1), H intersects all the first k − 1 axes, either at
the positive or the negative half-axis. Since there is exactly one orthant bounded by only
the non-intersected half-axes, H intersects exactly 2k−1 − 1 orthants. We now construct P
by extending Q with an additional point in each of the intersected orthants, such that H
separates this point from the origin. The label of each such point p has a1(p) = −1 and is
otherwise determined by the orthant. As a result, P uses 2k − 1 different labels.

Let v be the normal of H in the (k− 1)-dimensional subspace A. The margin for P− and
P+ along v is at least 1− kε (rough bound). For any separability preserving projection along
unit vector w, we have that |(w · v)| ≤ ε. Now consider any point p ∈ P and its projection
p′ = p− (w · p)w. We have that (p′ · v) = (p · v)− (w · p)(w · v) = (p · v)±O(ε), where we use
the fact that (w · p) = O(1). Thus, the margin for property a1 can be reduced by at most
O(ε) by the projection, and hence the projection keeps a1 strictly linearly separable if we
choose ε small enough.

If d > k, then we can construct a simplex with side lengths 1 in the last d − k + 1
dimensions, and place a copy of Cε around each of its vertices (for d = k this simplex is
simply an edge, as used above). With this construction we can still enforce without loss of

(0, 0, 0)

(0, 0, 1)

H

CH(Q2
−) CH(Q2

+)

w

Figure 4 Illustration for Lemma 4 with d = k = 3 and properties fill (a1), color (a2), and shape
(a3). Left: Q consisting of two copies of Cε. Middle: a separability preserving projection must be
nearly orthogonal to the (x, y)-plane. Right: the flat H separating property a1.
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Figure 5 Theorem 5 in 2D: 4 points are needed to construct two intersecting convex hulls.

generality, that |w1| ≤ ε for any separability preserving projection along unit vector w, and
the rest of the argument follows. J

We now assume that all 2k labels are used in P . Note that this assumption directly
implies that d ≥ k: take any set of k separating hyperplanes H1, . . . ,Hk for the k properties
and consider the arrangement formed by the hyperplanes in Rd. Clearly, all points in the
same cell of the arrangement must have the same label. However, it is well-known that it is
not possible to create 2k cells in Rd with only k hyperplanes if d < k. This also has interesting
implications for the case when d = k: if we apply a separation preserving projection to P ,
then a1 cannot be linearly separable in P ′, since P ′ is embedded in Rk−1.

We now show that, if d ≥ k, then there always exists a separation preserving projection
that eliminates the strict linear separability of a1 (see Figure 5). Our proof uses Kirchberger’s
theorem [16]. Below we restate this theorem in our own notation. We also include our own
proof, since the construction in the proof is necessary for efficient computation of our result.

I Theorem 5 ([16]). Let P and Q be two points sets in Rd such that CH(P ) ∩ CH(Q) 6= ∅.
Then there exist subsets P ∗ ⊆ P and Q∗ ⊆ Q such that CH(P ∗) ∩ CH(Q∗) 6= ∅ and
|P ∗|+ |Q∗| = d+ 2.

Proof. Let |P | = n and |Q| = m. We show that, if n+m ≥ d+ 3, then we can remove one
of the points from either P or Q. Pick a point x ∈ CH(P ) ∩ CH(Q). By definition, we can
find coefficients λ1, . . . , λn ≥ 0 and µ1, . . . , µm ≥ 0 such that

∑n
i=1 λipi = x =

∑m
j=1 µjqj ,∑n

i=1 λi = 1, and
∑m
j=1 µj = 1. If any of these coefficients is zero, then we can remove the

corresponding point whilst keeping x in the intersection of the two convex hulls. Otherwise,
we find nonzero coefficients a1, . . . , an and b1, . . . , bm such that

∑n
i=1 aipi =

∑m
j=1 bjqj ,∑n

i=1 ai = 0, and
∑m
j=1 bj = 0. As this is a linear system with d + 2 constraints and

n + m ≥ d + 3 variables, there must exist a set of nonzero coefficients that satisfy these
constraints. Let ρλ = min{λi/ai | ai > 0}, ρµ = min{µj/bj | bj > 0}, and ρ = min(ρλ, ρµ).
Now consider the new coefficients λ′i = λi − ρai and µ′j = µj − ρbj . By construction
we have that λ′i ≥ 0 for 1 ≤ i ≤ n, µ′j ≥ 0 for 1 ≤ j ≤ m,

∑
i λ
′
i =

∑
j µ
′
j = 1, and∑

i λ
′
ipi =

∑
j µ
′
jqj = x′. Additionally, one of the new coefficients is zero, and we can remove

the corresponding point. We can repeat this process until n+m = d+ 2. J

The following proof constructs a suitable projection vector using four main steps:
1. We project the points orthogonally onto the linear subspace A spanned by the normals of

the separating hyperplanes H2, . . . ,Hk.
2. We argue that, since P uses all 2k labels, a1 is not linearly separable in A.
3. We find a small subset of points P ∗ for which a1 is not linearly separable in A.
4. We construct a separation preserving projection that maps all points in P ∗ to an affine

transformation of A. As a result, a1 is not strictly linearly separable after projection.

CGT



2:8 Obstructing Classification via Projection

We assume that the points in P , along with the chosen separating hyperplanes, are in general
position. Specifically, we assume that any set of d vectors, where each vector is either a
distinct difference vector of two points in P or the normal vector of one of the separating
hyperplanes, is linearly independent. Note that, since all properties are initially strictly
linearly separable, it is always possible to perturb the separating hyperplanes to ensure
general position, assuming that P is also in general position.

I Theorem 6. If P is a point set in Rd in general position with k ≤ d strictly linearly
separable properties a1, . . . , ak using all 2k labels, then there exists a separation preserving
projection along a unit vector w that eliminates the strict linear separability of a1.

Proof. We provide an explicit construction of the vector w. Let H2, . . . ,Hk be any separating
hyperplanes (in general position with P ) for each of the properties a2, . . . , ak in P , respectively.
Let vi be the normal of hyperplaneHi for 2 ≤ i ≤ k, and let A ⊂ Rd be the (k−1)-dimensional
linear subspace spanned by v2, . . . , vk. Furthermore, let H∗ =

⋂k
i=2 Hi be the (d− k + 1)-

dimensional flat that is the intersection of the separating hyperplanes. Note that a projection
along a vector w is separation preserving if and only if w is parallel to H∗. For ease of
argument, we also directly apply an affine transformation that maps H∗ (which intersects A
in one point by construction) to the origin, and maps v2, . . . , vk to the standard basis vectors
of Rk−1.

Let T (p) be the result of an orthogonal projection of a point p ∈ P onto A. Now define
Q− = {T (p) | p ∈ P−} and Q+ = {T (p) | p ∈ P+}. By construction, since all labels are
used by P , both Q− and Q+ must have a point in each orthant of Rk−1. If a point set Q
has a point in each orthant, then CH(Q) must contain the origin; because if it does not,
then there exists a vector v such that (v · q) > 0 for all q ∈ Q. But there must exist a point
q∗ ∈ Q whose sign for each coordinate is opposite from that of v (or zero), which means
that (v · q∗) ≤ 0, a contradiction. Thus, both CH(Q−) and CH(Q+) contain the origin, and
CH(Q−) ∩ CH(Q+) 6= ∅. We now apply Theorem 5 to Q− and Q+ to obtain Q∗− and Q∗+
consisting of k + 1 points in total. Let P ∗ ⊆ P be the corresponding set of original points
that map to Q∗− ∪Q∗+. We can now construct w as follows. Pick a point p∗ ∈ P ∗, and let F1
be the unique (k − 1)-dimensional flat that contains the remaining points in P ∗. Let F2 be
the flat obtained by translating H∗ to contain p∗. Since F1 is (k − 1)-dimensional and F2 is
(d− k+ 1)-dimensional, F1 ∩F2 consists of a single point r ∈ Rd (assuming general position).
The desired projection vector is now simply w = r − p∗ (normalized if necessary).

We finally show that the constructed vector w has the correct properties. First of all, w
is parallel to H∗ by construction, and hence the projection along w is separation preserving.
Second, since r ∈ F1 and p∗ is projected to coincide with r (as w = r − p∗), all points in P ∗
will lie on the same (k − 1)-dimensional flat F ′1 after projection. Also, since w is orthogonal
to A, there exists an affine map from Q∗− ∪Q∗+ to P ∗ (after projection). Thus, we obtain
that CH(P ′−) ∩ CH(P ′+) 6= ∅; in particular, the convex hulls must intersect on F ′1. By Fact 1
this implies that a1 is not strictly linearly separable after projection. J

I Lemma 7. Let P and Q be two point sets in Rd in general position and let P ′ and
Q′ be the point sets obtained by projecting P and Q along a vector w, respectively. If
CH(P ′)∩CH(Q′) 6= ∅, then we can perturb w to obtain projections P ′′ and Q′′ such that P ′′
and Q′′ are not linearly separable and P ′′ ∪Q′′ is in general position.

Proof. Let P = {p1, . . . , pn} and Q = {q1, . . . , qm}, and similarly P ′ = {p′1, . . . , p′n} and
Q′ = {q′1, . . . , q′m}. We may assume that m + n ≥ d + 1, for otherwise P and Q do not
really span Rd. Since CH(P ′) ∩ CH(Q′) 6= ∅, there exist coefficients λi ≥ 0 (1 ≤ i ≤ n)
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F2

F1

p∗
w

(a) (b)

(c) (d)

p∗

F1

H2

v2

A

F1

w

r

Figure 6 Example construction of the projection vector with a1 = color and a2 = shape in R3.
(a): H2 is the hyperplane separating the points by shape (a2) and v2 is its normal. A is the space
spanned by v2. (b): After projecting all points orthogonally on A, we choose Q∗ as a collection of
three (k + 1) points such that CH(Q∗

−) ∩ CH(Q∗
+) 6= ∅. We trace Q∗ back to the original points.

From these points, we choose one to be p∗ and span F1 over the rest. (c): H2 is translated to the
origin and is now denoted as F2. The point r is the intersection of F1 and F2 and it is where p∗ is
mapped to. The projection vector w is then r − p∗. (d): The resulting points after projecting along
w are on the same plane. The three (k + 1) points used for the construction of w are placed on F1

after the projection.

and µj ≥ 0 (1 ≤ j ≤ m) such that
∑
i λi = 1,

∑
j µj = 1, and

∑
i λip

′
i =

∑
j µjq

′
j . We

can ignore some points with a zero coefficient so that we have exactly d + 1 points left,
and we assume in the remainder of this proof that m + n = d + 1. Now assume without
loss of generality, that λ1 > 0. We use the remaining points (P ′ ∪ Q′) \ {p′1} to set up
a barycentric coordinate system for the points in P ′ ∪ Q′. This has the advantage that
only the coordinates of p1 are affected when changing the projection vector w. Next, we
slightly perturb the coefficients to obtain λ′i > 0 (1 ≤ i ≤ n), µ′j > 0 (1 ≤ j ≤ m) with
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λ′1 = λ1,
∑
i λ
′
i = 1 and

∑
j µ
′
j = 1 (this is clearly possible). There then exists a vector v (in

barycentric coordinates) and ε > 0 (ε can be arbitrarily small by scaling the perturbation of
the coefficients) such that εv +

∑
i λ
′
ip
′
i =

∑
j µ
′
jq
′
j . Now consider the point p⊥1 which has

the same barycentric coordinates as p′1, but then with the barycentric coordinate system
defined by (P ∪Q) \ {p1}. Then, by Observation 2, we must have that p1 − p⊥1 = αw for
some constant α 6= 0. Now we perturb p⊥1 to p∗ such that p∗ has the same barycentric
coordinates as p′1 + (ε/λ1)v, but then again with the barycentric coordinate system defined
by (P ∪Q) \ {p1}. Additionally, we perturb w to w′ = p1 − p∗. Let P ′′ = {p′′1 , . . . , p′′n} and
Q′′ = {q′′1 , . . . , q′′m} be the point sets obtained by projecting P and Q along w′. We then have
by construction that

∑
i λ
′
ip
′′
i =

∑
j µ
′
jq
′′
j . Now assume for the sake of contradiction that P ′′

and Q′′ are linearly separable by a hyperplane H. Then H must contain CH(P ′′) ∩ CH(Q′′)
and, consequently, all points that have a nonzero coefficient for the convex combination of a
point x ∈ CH(P ′′) ∩ CH(Q′′) (since all points of either P ′′ or Q′′ lie on the same side of H).
By construction there are d+ 1 of these points in P ′′ ∪Q′′. Since H is (d− 2)-dimensional
and we performed only a single projection, this also implies that there were d+ 1 points on a
(d− 1)-dimensional hyperplane in P ∪Q. This contradicts the assumption that P ∪Q is in
general position. Finally, since CH(P ′′) and CH(Q′′) are not interior disjoint by Fact 1, this
property cannot be broken by slightly perturbing the projection vector w′. Thus, we can
also ensure that P ′′ ∪Q′′ is in general position. J

Computation. The proof of Theorem 6 is constructive and implies an efficient algorithm to
compute the desired projection. Most steps in the construction involve simple linear algebra
operations, like projections and intersecting flats (Gaussian elimination), which can easily
be computed in polynomial time. The only nontrivial computational step is the application
of Theorem 5, for which the proof is also constructive. If a point x ∈ CH(P ) ∩ CH(Q) is
given along with the coefficients for the convex combination, then we can simply obtain P ∗
and Q∗ by repeatedly solving a linear system of equations and eliminating a point. Note
that the linear system needs to involve only d+ 3 points (arbitrarily chosen), so the linear
system of equations can be solved in O(d3) time, and we can eliminate a point and update
the coefficients in the same amount of time. Thus, we can compute P ∗ and Q∗ in O(nd3)
time, where n = |P |+ |Q| (similar arguments were used in [20]). If we are not given a point
in x ∈ CH(P ) ∩ CH(Q) along with the coefficients for the convex combination, then this
must be computed first. This can be computed efficiently using linear programming.

The proof of Theorem 6 suggests how to check, if P does not use all 2k labels, if there
exists a separability preserving projection that eliminates the linear separability of a1: If we
can find a set of separating hyperplanes H2, . . . ,Hk such that CH(P−) and CH(P+) intersect
after projecting them orthogonally onto the space spanned by the normals of H2, . . . ,Hk,
then the remainder of the proof holds. However, finding such suitable separating hyperplanes
might be computationally hard in general.

3 Maximizing inseparability

In this section we consider the problem of not only eliminating the linear separability of a1,
but additionally to maximize the “linear inseparability” (or overlap) of a1 after projection.
For that we need to define the overlap between two point sets P and Q. For a unit vector
v, consider the intervals IP (v) = CH({v · pi | pi ∈ P}) and IQ(v) = CH({v · qi | qi ∈ Q}).
We can then define the overlap between P and Q along v as the length of IP (v) ∩ IQ(v).
Alternatively, we can define the overlap along a vector v with the cost function used by
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soft-margin SVMs, which is designed for data that is not linearly separable (see [4] for
more details). Roughly speaking, the soft-margin SVM assumes that the given data is not
always linearly-separable and hence incorporates a loss function to measure the severity of
misclassifications. Soft-margin SVM then aims to minimize this loss function while looking
for the separating hyperplane.

Given a way to measure the overlap between two point sets P and Q along a vector
v, we can define the overlap between P and Q as the minimum overlap between P and Q
over all (unit) vectors v. For a labeled point set P with special property a1, we use the
function g(P, v) to denote the overlap between P− and P+ along a vector v. We refer to g as
the overlap function. The overlap between P− and P+ is then defined as minv g(P, v). Our
goal is to find the projection that maximizes this overlap after projection. More precisely, if
we use πw(P ) to denote the projection of a point set P along the unit vector w, then the
goal is to maximize the function f(P,w) = minv g(πw(P ), v) over all separability/separation
preserving projection vectors w. We specifically consider the following two overlap functions
g(P, v) (although other options are possible):

Interval For a point set P and unit vector v, let I− = CH({v · pi | pi ∈ P−}) and I+ =
CH({v · pi | pi ∈ P+}). Then gint(P, v) = |I− ∩ I+|.

SVM The goal of the soft-margin SVM optimization is to minimize gsvm(P, v) = λ‖v‖2 +
1
n

∑n
i=1 max(0, 1− a1(pi)(v · pi− b)). Note that gsvm also requires a parameter b ∈ R, but

we will often omit that dependence (we can assume that the overlap function minimizes
over all b ∈ R). Furthermore, λ > 0 is a parameter that can be set for gsvm. Finally, note
that v does not need to be a unit vector.

We first consider the variant of the problem that aims to find the optimal separability
preserving projection, and we focus on the SVM-based overlap function. Since gsvm(P, v) is
typically optimized for v using convex programming (see [21]), we consider the question if
the optimization problem of optimizing f(P,w) over all separability preserving projections
is also convex. Note that convex programming heavily relies on the fact that there exists
only one local optimum (which hence must be the global optimum). We show that, for the
problem of finding the optimal separability preserving projection, there may be multiple local
optima for f(P,w). This eliminates the hope of finding a convex programming formulation
for this problem.

I Theorem 8. There exists a point set P in R3 with 2 properties a1, a2 such that f(P,w) =
minv gsvm(πw(P ), v) has two local maxima when restricted to all separability preserving
projection vectors w.

Proof. The set P mostly consists of the vertices of a unit cube with side lengths 2 centered
at the origin. We also add an extra point p∗ = (1− ε, 1− ε, 1) for some ε > 0 (a point slightly
moved inward from the point p8 = (1, 1, 1)). Thus, P consists of nine points {p1, . . . , p8, p

∗}.
For a vector or point p ∈ R3 let (x(p), y(p), z(p)) denote its coordinates in R3. We simply
choose the property a1 such that a1(p) = z(p) for all p ∈ P . For property a2 we have
that a2(p) = a1(p) for all p ∈ P \ {p8}, and a2(p8) = −1. Now we limit and encode the
space of possible projection vectors w to R2 as follows. If z(w) = 0, then it is clear that a
projection along w will keep a1 linearly separated, so we may encode all valid projections
as (x, y) = (x(w)/z(w), y(w)/z(w)). Now consider the effect of using a projection (x, y) on
P : we may assume that the x- and y-coordinates of points p ∈ P with z(p) = 1 do not
change (by using an additional affine transformation) and that for the other points we obtain
a shifted square: (x(p′), y(p′)) = (x(p) + 2x, y(p) + 2y) for all p ∈ P with z(p) = −1. Let
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Figure 7 Illustration for Theorem 8: The domain for projections (x, y) with ε = 0.2. Higher
values in the overlap function are indicated with lighter colors. We can see two distinct local maxima.

p1 = (−1,−1,−1) such that p′1 = (−1 + 2x,−1 + 2y). Furthermore, let A consist of the
projections of all points p ∈ P with a1(p) = 1, and let B consist of the projections of all
points p ∈ P with a2(p) = 1. Note that A forms a square and B forms a square with one of
the corners pushed inwards (as a2(p8) = −1, and hence that corner is replaced by p∗). By
Fact 1, a projection (x, y) can be separability preserving only if p′1 /∈ CH(B). By the same
observation, a projection (x, y) with x ≥ 0 and y ≥ 0 preserves the linear separability of a1 if
p′1 /∈ CH(A). Thus, we require that p′1 = (−1 + 2x,−1 + 2y) ∈ CH(A) \ CH(B). Note that
CH(A) \ CH(B) is a thin and nonconvex shape. The same thus holds for the domain of the
projections (x, y) as shown in Figure 7, and hence the optimization problem is not convex.
Furthermore, by evaluating the overlap function gsvm (using λ = 10) on this domain, we can
see that there are two distinct local maxima: one close to (0, 1) and one close to (1, 0). J

Theorem 8 demonstrates that the constraint on projections to be separability preserving
is generally not convex. We now consider the special case that we have only one property
a1 (hence we do not need to preserve the separability of any other properties), and analyze
if we can then efficiently maximize f(P,w). For that, we first put a restriction on the
overlap function g(P, v): We say that g(P, v) is projectionable if there exists a function
h : Rn × Rd → R such that g(P, v) = h(v · P, v), where v · P = {v · pi | pi ∈ P}. In other
words, g should only depend on P via the dot products of points in P with v. Note that
both the Interval and SVM overlap functions are indeed projectionable. For projectionable
overlap functions g we can redefine the optimization function f . In the following, let v ⊥ w
indicate that v and w are orthogonal.

I Lemma 9. If g(P, v) is a projectionable overlap function, then
maxw minv g(πw(P ), v) = maxw minv⊥w g(P, v) for any point set P ⊂ Rd.

Proof. We will treat both w and v as vectors in Rd. Since g is projectionable, there exists
an equivalent function h that depends on v and the dot products between v and points in P .
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Now assume that (v · w) = 0. Then we get

g(πw(P ), v) = h(v · πw(P ), v)
= h({v · (pi − (w · pi)w) | pi ∈ P}, v)
= h({v · pi | pi ∈ P}, v)
= g(P, v).

Since the vector v that minimizes g(πw(P ), v) must be perpendicular to w, we obtain the
desired equality. J

In the following we assume that the overlap function g is projectionable. Hence, by Lemma 9,
we can rewrite f as f(P,w) = minv⊥w g(P, v). This has the advantage that we can keep the
point set P fixed while optimizing for w. We now aim to link properties of g to properties of
f . As already discussed earlier, we can often find the vector v that minimizes g(P, v) using
convex programming. This implies that g has only one local minimum (for fixed P ). We
now use this fact to show that f has only one local maximum.

I Theorem 10. If a function g(P, v) has one local minimum for a fixed point set P in Rd,
then f(P,w) = minv⊥w g(P, v) has one local maximum over all (unit) projection vectors w.

Proof. Note that w ∈ Sd−1, where Sd−1 is the unit (d− 1)-sphere, and f(P,w) = f(P,−w),
so we will treat w and −w as equivalent. Similarly, if the local minimum of g(P, v) is at
v = v∗, then v = −v∗ may also be a local minimum, and together they will be counted
as a single local minimum. For the sake of contradiction, assume that f(P,w) has two
distinct local maxima, one at w = w∗1 and one at w = w∗2 (and also at w = −w∗1 and
w = −w∗2). We do not require that w∗1 and w∗2 are strict local maxima, but we do require
that there exists no path γ : [0, 1] → Sd−1 with γ(0) = w∗1 and γ(1) = ±w∗2 such that
f(P, γ(t)) ≥ min(f(P, γ(0)), f(P, γ(1))) for all 0 ≤ t ≤ 1. Now consider the hyperplanes
H1 = {v | (v · w∗1) = 0} and H2 = {v | (v · w∗2) = 0}. The hyperplanes H1 and H2 split
Rd into four parts (each hyperplane cuts Rd into two parts): R00, R01, R10, and R11. Now
let x∗ = min(f(P,w∗1), f(P,w∗2)) and consider the sublevel set S = {v | g(P, v) < x∗}. By
definition of f , H1 and H2 are disjoint from S. Now, let γ+ : [0, 1] → Sd−1 denote the
shortest (hyper)spherical interpolation from w∗1 to w∗2 , and let γ− : [0, 1] → Sd−1 denote

w∗
1

w∗
2

H1

H2H+(t)

H−(t)

Figure 8 Illustration for Theorem 10 with d = 2: H+(t) can only intersect R00 ∪ R11 (orange,
clipped to the unit disk) and H−(t) can only intersect R01 ∪R10 (blue).
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the shortest (hyper)spherical interpolation from w∗1 to −w∗2 . Note that γ− and γ+ are
unique, since both w∗1 and w∗2 lie on a great circle on Sd−1 together with −w∗2 . Consider
any vector γ+(t) for some 0 < t < 1, and let H+(t) = {v | (v · γ+(t)) = 0} be the
corresponding perpendicular hyperplane. Similarly define H−(t) for γ−(t). It is easy to see
that H+(t) intersects either R01 ∪ R10 or R00 ∪ R11, but not both, and H−(t) intersects
only the other region (see Figure 8). By assumption, there exist values t∗− and t∗+ such that
f(P, γ−(t∗−)) < x∗ and f(P, γ+(t∗+)) < x∗. Thus, by the definition of f , there must be two
non-opposite regions, say R00 and R01, that contain a point in S. These points cannot be
in the same connected component, as they are separated by either H1 or H2. Thus, S has
multiple (non-opposite) connected components, and hence g(P, v) must have at least two
local minima. This contradicts our assumption, and hence f(P,w) can have at most one
local maximum. J

Following Theorem 10, we can use a hill-climbing approach to find the optimal projection
vector w, if there is only one property a1. This same approach can be applied to find the
optimal separation preserving projection for k properties. In that case, the corresponding
separating hyperplanes H2, . . . ,Hk each take away a degree of freedom, but otherwise do
not bound the domain of w. More precisely, if there is only one property a1, then w ∈ Sd−1,
where Sd is the unit d-sphere. If there are k properties, then w ∈ Sd−1∩H2∩ . . .∩Hk = Sd−k.
This reduction in dimensionality of the domain of w does not affect the proof of Theorem 10.

4 Generalized separability

In this section we consider a generalization of linear separability for classification. One
approach to achieve more complicated classification boundaries is to use clustering: the
label of a point is determined by the label of the “nearest” cluster. If we use more than one
cluster per class, then the resulting classification is more expressive than classification by
linear separation. This approach is also strongly related to nearest-neighbor classification,
another common machine learning technique: the points decompose the space into convex
subsets, each of which is associated with exactly one point; given enough clusters, we can
thus exactly capture this behavior. But even with few clusters (convex sets), it may be
possible to reasonably approximate the decomposition by using a single cluster to capture
many points with the same label. Hence, our generalized definition of separability is inspired
by such clustering-based classifications, with convex sets modeling the clusters.

Let P and Q be two point sets in Rd. We say that P and Q are (b, c)-separable if there
exist b convex sets S1, . . . , Sb and c convex sets T1, . . . , Tc such that for every point p ∈ P
we have that p ∈ S =

⋃
i Si, for every point q ∈ Q we have that q ∈ T =

⋃
j Tj , and that

S ∩ T = ∅ (see Figure 9). Without loss of generality, we can assume that b ≤ c and that

Figure 9 Left: two point sets P (red) and Q (blue) that are (1, 2)-separable, but not linearly
separable. Right: two point sets that are (2, 2)-separable, but not (1, x)-separable for any value of x.
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any convex set Si is the convex hull of its contained points. It is easy to see that linear
separability and (1, 1)-separability are equivalent.

Given a point set P along with k properties a1, . . . , ak, the goal is now to compute a
separation preserving projection to a point set P ′ such that a1 is not (b, c)-separable in P ′.
We again assume that all k properties are strictly linearly separable in P . To achieve this
goal, we may need to project along multiple vectors w1, . . . , wr. As mentioned in Section 1,
we assume that {wj}rj=1 form an orthonormal system and that we can compute the projected
points as p′i = pi −

∑r
j=1(wj · pi)wj .

To extend Theorem 6 to (b, c)-separability, recall the four main steps of the proof described
before Theorem 6. Step 3 is the most important. If a1 was not linearly separable in A (the
linear subspace spanned by the normals of the separating hyperplanes H2, . . . ,Hk), then not
even multiple separation preserving projections can eliminate the linear separability of a1.
In that sense, A is the “worst we can do” with separation preserving projections. Step 3 is
actually exploiting a Helly-type property [24] for linear separability: If two sets of points
P and Q are not linearly separable, then there exist small subsets P ∗ ⊆ P and Q∗ ⊆ Q

such that P ∗ and Q∗ are not linearly separable (Theorem 5). Hence, if we use a different
type of separability that also has a Helly-type property, then we may be able to use the
same approach as for linear separability. Generally speaking, let F (P,Q) be a predicate
that determines if point sets P,Q ⊂ Rd are “separable” (for some arbitrary definition of
separable)3. If, in the case that F (P,Q) does not hold, there exist small (bounded by a
constant) subsets P ∗ ⊆ P and Q∗ ⊆ Q such that F (P ∗, Q∗) also does not hold, then F has
the Helly-type property. The worst-case size of |P ∗|+ |Q∗| often depends on the number of
dimensions d of P and Q, and is referred to as the Helly number mF (d) of F . For technical
reasons, we will require the following three natural conditions on F :

1. If F (P,Q) does not hold, then F (P ′, Q′) does not hold, where P ′ and Q′ are obtained by
projecting P and Q along a single unit vector, respectively.

2. If P ′ ⊆ P and Q′ ⊆ Q, then F (P,Q) implies F (P ′, Q′).
3. If A is an affine map, then F (P,Q) holds if and only if F (A(P ),A(Q)) holds.

We call a separation predicate F well-behaved if it satisfies these conditions. It is easy
to see that (b, c)-separability is well-behaved. For Condition 1, note that any collection of
convex sets for P ′ and Q′ can easily be extended along the projection vector for P and Q
without introducing an overlap between S and T . Condition 2 also holds, since we can simply
use the same covering sets. Finally, Condition 3 holds since affine transformations preserve
convexity. We summarize this generalization in the following generic theorem.

I Theorem 11. Let P be a point set in Rd with k (d ≥ k) properties a1, . . . , ak and let F be a
well-behaved separation predicate in Rd. Either we can use at most min(mF (k−1)−k, d−k+1)
separation preserving projections to eliminate F (P−, P+), or this cannot be achieved with
any number of separation preserving projections.

Proof. Following the proof of Theorem 6, we first orthogonally project the points in P

onto the (k − 1)-dimensional linear subspace A that is spanned by the normals v2, . . . , vk
of the separating hyperplanes H2, . . . ,Hk of the properties a2, . . . , ak. Let T (p) be the
resulting projected point for a point p ∈ P . Now define Q− = {T (p) | p ∈ P−} and
Q+ = {T (p) | p ∈ P+}. If F (Q−, Q+) holds, then no sequence of separation preserving

3We assume that F is defined independently from the dimensionality of P and Q (like (b, c)-separability).
We do require that P and Q are embedded in the same space.
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projections can eliminate the separability (as defined by F ) of a1, due to Condition 1 of a
well-behaved separation predicate. Otherwise, we can find Q∗− ⊆ Q− and Q∗+ ⊆ Q+ such that
F (Q∗−, Q∗+) does not hold, and |Q∗−|+ |Q∗+| ≤ mF (k − 1). Let P ∗ ⊆ P be the set of original
points that map to Q∗− ∪Q∗+. The points in P ∗ span a linear subspace B. Next, we construct
an orthonormal basis {wj}rj=1 for the set of vectors in B that are orthogonal to A (orthogonal
to v2, . . . , vk). Since B has at most mF (k − 1)− 1 dimensions, and A has k − 1 dimensions,
we conclude that the orthonormal basis contains r ≤ mF (k−1)−1− (k−1) = mF (k−1)−k
vectors. We then choose to project P along the vectors w1, . . . , wr. Since every wj for
1 ≤ j ≤ r is orthogonal to A, these projections are all separation preserving. Furthermore,
since we eliminate all vectors orthogonal to A from B, there exists an affine map from
Q∗− ∪Q∗+ to P ∗ after projection. By using Condition 2 and Condition 3 of a well-behaved
separation predicate, we can then conclude that F (P ′−, P ′+) does not hold. Alternatively,
we can simply project P to A, which requires d− k + 1 separation preserving projections.
Hence, we need at most min(mF (k − 1)− k, d− k + 1) projections. J

We now focus on (b, c)-separability for different values of b and c. Unfortunately, not
every form of (b, c)-separability has the Helly-type property.

I Lemma 12. In d ≥ 2 dimensions, (1, 2)-separability does not have the Helly-type property.

Proof. We prove the statement for d = 2, which automatically implies it for d > 2. Consider
a set of n points P = {p1, . . . , pn} equally spaced on the unit circle, where n is odd. For
every point pi we can define a wedge Wi formed between the rays from pi to the two opposite
points on the circle (which are well defined, since n is odd). By the Central Angle Theorem,
the angle of this wedge is π

n . Furthermore, the distance of the rays to the origin is exactly
sin
(
π
n

)
. Now, for some ε > 0 and for each point pi, we add a point qi on the circle centered at

the origin with radius sin
(
π
n

)
+ε, such that qi lies outside ofWi to the left (counterclockwise).

By construction there will also be a point qj to the right of Wi, added by the point pj that
is the opposite point of pi on the right (clockwise) side. We choose ε small enough such that
any wedge Wi contains exactly n− 2 points from Q = {q1, . . . , qn}, having one point of Q
outside of Wi on each side (see Figure 10).

Assume for the sake of contradiction that P and Q are (1, 2)-separable. Since Q ⊂ CH(P ),
we must cover Q with one set, and hence S1 = CH(Q). Now consider P1 = T1 ∩ P and
P2 = T2 ∩ P . Since the line segments between a point pi ∈ P1 and its opposite points pj
and pj+1 intersect CH(Q), we get that pj and pj+1 must both be in P2. We can repeat this
argument for all points pi to conclude that all pairs of consecutive points of P must be in
the same set (P1 or P2). Since not all points in P can belong to the same set (Q ⊂ CH(P )),
we obtain a contradiction. Thus, P and Q are not (1, 2)-separable.

Now consider removing a single point pi from P , and consider the line ` through the
origin and pi. The line ` splits P \ {pi} into two sets P1 and P2. It is easy to see that, if we
pick ε small enough, CH(P1) and CH(P2) do not intersect CH(Q). Hence, P \ {pi} and Q
are (1, 2)-separable. If we remove a single point qi from Q, then the line segment between pi
and one of its opposite points pj does not intersect CH(Q \ {qi}). We can again split P into
P1 and P2 using the line ` through pi and pj (and shifted slightly towards the origin). Then
it is again easy to see that, if we pick ε small enough, CH(P1) and CH(P2) do not intersect
CH(Q \ {qi}). Hence, P and Q \ {qi} are (1, 2)-separable.

As a result, there exist no subsets of P and Q that are not (1, 2)-separable. Thus,
we get that the Helly number for (1, 2)-separability is at least |P | + |Q| = 2n, and hence
(1, 2)-separability does not have the Helly-type property. J
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pi

pj

Wi

pj+1

qi

qj

Figure 10 The construction for Lemma 12 with P in red and Q in blue.

q∗ p∗ q∗p∗

Figure 11 Lemma 13: constructing a small point set that is not (1,∞)-separable.

Hence we cannot apply Theorem 11 to eliminate (1, 2)-separability of a1 in few separation
preserving projections, if possible at all. However, this does not mean that it is not possible
to provide this guarantee using different arguments. Nonetheless, we can use a similar
construction as in the proof of Lemma 12 (using many more dimensions) to show that many
separation preserving projections are needed to eliminate (1, 2)-separability for a1 (as many
projections as needed to reach the 2-dimensional construction in the proof of Lemma 12).

Next, we consider (1,∞)-separability. This means that one of the point sets, say P , must
be covered with one convex set, but we can use arbitrarily many convex sets to cover Q.
Equivalently, P and Q are (1,∞)-separable if CH(P ) ∩Q = ∅ or P ∩ CH(Q) = ∅.

I Lemma 13. In d ≥ 1 dimensions, (1,∞)-separability has the Helly-type property with
Helly number 2d+ 2.

Proof. Let P and Q be point sets in Rd such that P and Q are not (1,∞)-separable. Let
p∗ ∈ P and q∗ ∈ Q. Then there must be a point p∗ ∈ CH(Q) and a point q∗ ∈ CH(P ). We
can construct a star triangulation T (P ) of CH(P ) with p∗ as center (that is, all d-dimensional
simplices have p∗ as a vertex) and a star triangulation T (Q) of CH(Q) with q∗ as center
(see Figure 11). We identify the unique simplex σP ∈ T (P ) that contains q∗, and similarly
the unique simplex σQ ∈ T (Q) that contains p∗. Now let P ∗ ⊆ P be the vertices of σP
and let Q∗ ⊆ Q be the vertices of σQ. Note that p∗ ∈ P ∗ and q∗ ∈ Q∗. Then P ∗ and Q∗
are not (1,∞)-separable, since q∗ ∈ CH(P ∗) ∩Q∗ and p∗ ∈ CH(Q∗) ∩ P ∗. Finally, since a
d-dimensional simplex contains d+ 1 vertices, we obtain Helly number 2d+ 2. J

I Corollary 14. Let P be a point set in Rd with k (d ≥ k) properties a1, . . . , ak. Either we can
use at most min(k, d−k+1) separation preserving projections to eliminate (1,∞)-separability
of a1, or this cannot be achieved with any number of separation preserving projections.
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It may initially seem counter-intuitive that (1,∞)-separability has the Helly-type property
(requiring only few projections to eliminate (1,∞)-separability), while the strictly stronger
(1, 2)-separability does not have the Helly-type property (and may require many projections
to eliminate (1, 2)-separability). Note however that Theorem 11 includes the clause that
it simply may not be possible to eliminate separability of a1 via any number of separation
preserving projections. This case occurs more often with (1,∞)-separability than with
(1, 2)-separability, which explains why we can provide better guarantees on the number of
projections for a strictly weaker separability condition.

We finally briefly consider (2,∞)-separability in R2. Two point sets P and Q are not
(2,∞)-separable in R2 if we need at least three convex sets disjoint from Q to cover P (and
vice versa). This implies that CH(P ) must contain at least 3 points of Q; if not, then we
can draw a single line through all points in Q ∩ CH(P ) to separate P into P1 and P2, and
CH(P1) and CH(P2) both cover P and are disjoint from Q. More generally, assume that we
can cover P with two sets CH(P1) and CH(P2) that are disjoint from Q, and let ` be a line
that separates CH(P1) and CH(P2) (Fact 1). Now consider the set of all triangles TP that
are formed by three points of P such that a point of Q is contained in the triangle. We must
have that ` transverses (intersects) all triangles in TP , otherwise the triangle is contained
in P1 or P2, and hence there is a point of Q in either CH(P1) or CH(P2). Furthermore, if
there is point q ∈ Q contained in, say, CH(P1), then there is also a triangle ∆ ∈ TP in P1
(Carathéodory’s theorem), and hence ` does not intersect all triangles in TP . Thus, P and Q
are (2,∞)-separable (assuming we cover P with 2 convex sets) if and only if there exists a line
` that transverses TP . As a result, if we can show a Helly-type property for line transversals
of triangles, then we also obtain a Helly-type property for (2,∞)-separability. Unfortunately,
there is no Helly-type property for line transversals of general sets of triangles [17]. We leave
it as an open question to determine if there exists a Helly-type property for line transversals
of these special sets of triangles TP .

5 Conclusion

We studied the use of projections for obstructing classification of high-dimensional Euclidean
point data. Our results show that, if not all possible labels are present in the data, then it
may not be possible to eliminate the linear separability of one property while preserving it
for the other properties. This is not surprising if a property that we aim to keep is strongly
correlated with the property we aim to hide. Nonetheless, one should be aware of this effect
when employing projections in practice. When going beyond linear separability, we see that
the number of projections required to hide a property increases significantly in theory, and we
expect a similar effect when using, for example, neural networks for classification in practice.
In other words, projecting a dataset once (or few times) may not be sufficient to hide a
property from a smart (non-linear) classifier. Projection, as a linear transformation, can
however be effective in eliminating certain linear relations in the data.

We have showed how to maximize the linear inseparability with respect to a given overlap
function that captures the linear inseparability. Although projecting along a vector that
maximizes the linear separability will achieve the highest overlap between two classes of the
data (given an overlap definition), it is unclear how inseparable the projected points are
when non-linear classifiers are applied. In other words, how inseparable the projected points
are in general. Measuring (in)separability of the points in a general sense or with respect to
a non-linear classifier is possible future work.

Furthermore, we have discussed hiding a property with a binary value, however, our
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method can be extended to hide properties with multiple values. In order to hide a property
with n values, one has to do n− 1 projections, where each projection aims to remove linear
separability with respect to two of the values of the property. More efficient ways (fewer
projections) to hide non-binary properties are left for future work.

Another potential direction of future work is to consider other separability predicates for
labeled point sets, beyond linear separability and (b, c)-separability. Are there other types of
separability that also have the Helly-type property used in Theorem 11? Or is there another
way to show that few projections suffice to eliminate the separability of one of the properties?
There are many other types of separability (for example, via boxes or spheres) for which this
can be evaluated.

In this paper we focused on eliminating bias based on one property (such as gender).
Intersectionality posits that discrimination due to multiple properties should be considered
in a holistic manner, instead of one property at a time. In fact, any one property might not
be a cause for discrimination, but their combination is. The following challenge arises: say
we used projection successfully to eliminate the linear separability of gender. However, if we
now restrict the data to one particular sub-class, for example black people, then the linear
separability of gender might still be preserved within this subclass and hence discrimination
against black women can still be possible. Under which conditions is it possible to eliminate
the linear separability of one property not only in the full data, but also in specific (or all)
subclasses? We leave this question as an open problem.
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