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—— Abstract

This work is the full version describing the winning implementation of the CG:SHOP 2023 Challenge.
The topic of the Challenge was the convex cover problem: given a polygon P (with holes), find a

minimum-cardinality set of convex polygons whose union equals P. We use a three-step approach:
(1) Create a suitable triangulation of P. (2) Compute a visibility graph of the triangles. (3) Solve a
vertex clique cover problem on the visibility graph, from which we then derive the convex cover.
This way we capture the geometric difficulty in the first step and the combinatorial difficulty in the
third step.
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1 Introduction

Covering a polygon with the minimum number of convex pieces is a fundamental problem
in computational geometry and the problem chosen for the CG:SHOP 2023 Challenge [7].
In this problem we are given a polygon P (potentially with holes) and we have to find a
smallest possible set of convex polygons whose union equals P. This problem is NP-hard [5]
and was later shown to be even IR-complete [1]. Note that in the Challenge, all coordinates
of the solutions had to be rational, and then the decision problem is not even known to be
decidable. Thus, it is not expected that there exists any fast algorithm that always finds the
optimal solution. Likewise, we are not aware of any previously described algorithm which is
fast in practice. In this 5th CG:SHOP Challenge, there were a total of 22 teams who signed
up, out of which 18 submitted solutions. Our team — named DIKU (AMW) — obtained
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the highest total score, despite finding fewer smallest solutions than the runner-up [6], as we
achieved significantly smaller solutions on many of the largest Challenge instances. See [7]
for a survey about the Challenge.

Our algorithm consists of three steps. In step (1), the aim is to capture the geometry of
the problem. We do this by triangulating the input polygon P. Note that the corners of
these triangles do not have to be corners of P, i.e., they can be Steiner points. In step (2), we
move from the geometric structure to a combinatorial structure. We do this by computing a
visibility graph G of the triangulation, with each triangle corresponding to a vertex and an
edge is inserted for two vertices only if the convex hull of the corresponding triangles lies
within P (i.e., the convex hull would be a valid piece of the convex cover). Finally, in step
(3), we solve a combinatorial problem: we find a vertex clique cover (VCC) of G with small
cardinality. Recall that a vertex clique cover is a set of cliques in G, such that each vertex in
G appears in one of the cliques. When possible, we use the convex hull H of the triangles
of a clique C as a piece of our convex cover. However, H may intersect holes of P, which
makes H an invalid piece. This happens rarely for the Challenge instances, but in that case
we split C' into smaller cliques.

The steps (1)—(3) are described in more detail in Sections 2.1-2.3 below. In Section 3,
we describe some of the algorithmic ideas used to make polygon containment tests fast in
practice, which is used in both steps (2) and (3). Finally, in Section 4, we give examples of
the resulting covers and report on experiments.

We believe that the main insights and highlights of our approach are:

1. Assembling the pieces and the cover at the same time (instead of first deciding on the
pieces and then assembling the cover) allows for great flexibility and adaptivity.

2. Reduction to a fundamental graph problem allows for usage of a powerful set of already
existing tools.

3. As we can arbitrarily choose a partition in the first step of the algorithm, our approach is
very adaptive with respect to input structure and instance size (e.g., simpler partitions
can be chosen for larger instances).

Since the preliminary version of this paper was published [3], a similar approach has
been applied to approximating robot configuration spaces with few convex sets [13]. Such
a collection of convex sets covering nearly all of the free space can dramatically accelerate
many computations in robotics, such as finding shortest paths. See also [2], a survey that
suggests variants of the convex cover problem that may be relevant in robotics.

2 Algorithm

In this section we describe our algorithmic approach to solve the convex cover problem.
There is a subsection for each of the three main steps of our approach: compute a partition
of the polygon, compute a visibility graph of the parts, and then create a convex cover from
the visibility graph.

2.1 Step 1: triangulation

First, we triangulate the input polygon. While our approach in principle works with any
kind of partition, for simplicity we only use triangulations. Recall that the goal is to obtain
triangles from which we can later assemble good pieces for a convex cover, and that the
corners of these triangles are not restricted to lie on the corners of P. In fact, to obtain good
solutions one often needs Steiner points.
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Figure 1 Polygon P (left), extensions of P (middle), and extension partition of P (right).

SIS

Figure 2 Polygon P (left) and concave-chain triangulation with no grid (right).

In the simplest case, we use a Delaunay triangulation (constrained by the edges of the
polygon). We prefer a Delaunay triangulation over an arbitrary triangulation because it
leads to fat triangles, which we intuitively assume to create better pieces for the convex cover.
The main issues of using a Delaunay triangulation of P as partition are that its vertices
are restricted to the corners of P and that the pieces can be too coarse to merge into valid
convex pieces; see Figure 10 for an example for which this leads to a suboptimal cover. Thus,
the question is: which Steiner points should we introduce to obtain better solutions?

Consider a directed edge e of P and suppose that the interior of P is to the left of e. We
define the extension of e to be the maximal directed segment s such that e C s C P; see
Figure 1 (middle). Note that a piece @ of a convex cover can contain an interior point of
e only if @) does not contain a point to the right of s. Thus, intuitively it makes sense to
include pieces of the cover that are bounded by s. This intuition is captured by the extension
partition, which is the constrained Delaunay triangulation of the extensions of all edges of P;
see Figure 1 (right).

Unfortunately, the extension partition can have quadratic size in the number of vertices
of P. This renders an extension partition infeasible for some large instances. To reduce the
size of the extension partition in these cases, we try to restrict to important extensions. As
described above, we add the extension of an edge e to facilitate the creation of a piece that
covers the interior of e. This is a local property and we hence prefer shorter extensions as
they capture the local structure but hopefully lead to fewer intersections. We did so in two
ways: (i) given a length threshold, we only include the extensions that have length below
this threshold, and (ii) pick extensions with probabilities that decrease with the length of an
extension.

Finally, consider the case of long concave chains in polygons, i.e., a sequence of edges
that have concave inner angles; see Figure 11 for an example. Note that if we have a concave
chain of k edges, then we also need at least k pieces to cover it as no interior of two edges
can be covered by the same convex piece (assuming that the concave chain does not turn so
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Figure 3 For the set of green triangles (left), every pairwise convex hull is contained in P (middle),
but the convex hull of all the green triangles is not (right).

much that some edges face each other). To create a triangulation that captures this property,
we do the following: we add a small triangle to each edge of the concave chain, which is
formed by the extensions of its neighboring edges, see Figure 2. This in particular enables our
algorithm to later create pieces that cover edges of multiple concave chains, see Figure 11.

2.2 Step 2: visibility graph

In order to create a convex cover, we first want to determine which triangles we can potentially
combine to form pieces for the cover. Given a triangulation 7 of the polygon P and two
triangles p, ¢ € T, we say that g is fully visible from p if every point in p sees all of ¢, in other
words, the convex hull of p U g is contained in P. We say that q is partially visible if every
point in p sees some point in ¢ (but not necessarily the same). We define the visibility graph
G = (T, E), which contains an edge pq if ¢ is fully visible from p. We can compute G naively
by checking for each pair p,q € T whether its convex hull is contained in P. However, the
running time Q(|71?) renders this impractical. A simple observation comes in handy here:
For any triangle g € 7 fully visible from p € T, there exists a path from p to ¢ in the dual
graph! of 7 using only triangles that are partially visible from p. Thus, instead of checking
all pairwise visibilities, we can simply perform a BFS on the dual graph from each of the
triangles. When doing BFS from a triangle p, we only add neighbours of triangles that are
partially visible from p to the BFS queue, and we stop exploring around triangles that are
not even partially visible. While this significantly reduces the running time in practice, it
can still be too expensive. For further speedup, we resort to building a subgraph of G by
only adding neighbour triangles that are fully visible from p to the BFS queue. The region
we explore will thus be bounded by triangles that are not fully visible. To speed up the
visibility graph construction, we engineered fast visibility checks to be described in Section 3.

2.3 Step 3: compute cover

We employ the following three steps to compute a convex cover using the visibility graph.

Compute vertex clique cover

We first compute a vertex clique cover (VCC) on the visibility graph. The problem of

finding a minimum VCC is one of Karp’s classical NP-hard problems, and there exists

no n'~c-approximation algorithm for any ¢ > 0 unless P = NP. However, there exist

! The dual graph of a partition is defined as follows: the vertex set consists of the triangles of the partition
and there is an edge between two vertices iff the two corresponding triangles touch.
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implementations that compute small solutions on practical instances. Namely, Chalupa [4]
presented a randomized clique-growing approach that was subsequently used as a subroutine
by Strash and Thompson [11] in their state-of-the-art solver ReduVCC that uses sophisticated
reduction rules with a branch-and-reduce approach.

Fix cover

Recall that a clique C corresponds to a set of triangles that are pairwise fully visible. We
would like to use the convex hull @ of the triangles as a piece in our convex cover, but Q)
may not be contained in P; see Figure 3 for a simple example. While this rarely happens on
the Challenge instances (see Section 4.3), we nonetheless have to post-process such pieces to
obtain a feasible convex cover.

Let us first give the following lemma which characterizes the situation where @ is not
contained in P.

» Lemma 1. Let Q be the convex hull of the triangles corresponding to a clique C. Then
Q is disjoint from the unbounded connected component of the complement of P, and if @
intersects a hole of P, then the hole is contained in Q.

Proof. Since @) is the convex hull of triangles for which each pair has full visibility, the
boundary of @ is contained in P. Hence, any connected component in the complement of
P that intersects @) is also contained in ). It follows that the unbounded region of the
complement of P cannot intersect (), and if a hole intersects (), then the hole is contained in

Q. <

We fix an invalid piece @ as follows: Pick any hole H that invalidates @ and consider
an arbitrary line ¢ intersecting H. Let L be one of the two half-planes bounded by ¢. Now
partition the triangles as C' = C7 U Cy, where triangles in C; intersect L and triangles in
C5 are disjoint from L. Taking the convex hulls of C7 and Cs, we get two new pieces Q1
and @2, and we claim that both are disjoint from H. We apply this procedure recursively
to @1 and Q2 (always reducing the number of holes intersected by at least one) until all
newly created pieces are valid; see Figure 4. The following lemma states that the described
procedure indeed eliminates the intersections with the hole H.

» Lemma 2. Following the process described above, the mew pieces Q1 and Qo are both
disjoint from the hole H.

Proof. Suppose for contradiction that @; intersects H for some ¢ € {1,2}. By Lemma 1, if
Q; intersects H, then @); contains H. The polygon Qs is disjoint from the half-plane L and
H intersects L, so Q2 cannot contain H. To see that )7 cannot contain H, note that the
connected components of the complement ¢\ H contains two unbounded rays ¢; and {5, one
on each side of H. There must be triangles A; and A, in C such that A; intersects ¢;, since
otherwise, ()1 would not contain H. It then follows that there is no full visibility between
A and As, as the line ¢ between them is obstructed by H. This is a contradiction. <

Make cover minimal

At this point, we may end up with a non-minimal cover, i.e., there may exist redundant
pieces; see Figure 5. To make the solution minimal, we iterate over the pieces and remove
them from the cover if their removal does not invalidate it.
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M Figure 4 The shown triangles form a clique, but the resulting piece Q is invalid due to holes H
and H’'. We eliminate the holes by splitting @ into Q1 and Q2 (left), and then splitting Q2 into
Q2,1 and Q2,2 (right), using lines ¢ and ¢ through H and H', respectively.

b & 44

I Figure 5 Extension partition with suboptimal clique cover (left), the corresponding convex cover
(middle), and a convex cover without the unnecessary purple polygon (right).

@22

- Fast polygon containment

One of the most frequent sub-problems that we have to solve in our approach is to decide
whether a given convex polygon @ is contained in the input polygon P, or in the visibility
polygon of a point in P. We need to answer this question in both step (2) and (3): In step
(2), we need to decide whether the convex hull of two triangles is contained in P. In step
(3), we need to check whether the convex hull of the triangles forming a clique is contained
in P, and if not, we recursively split and check for containment as described in Section 2.3.
We employ various methods for such containment queries, which we explain in the following
subsections.

3.1 Containment in constant time

When constructing the visibility graph, we can often decide if an edge is present or not in
constant time using the following lemma, which is illustrated in Figure 6.

» Lemma 3. Consider two triangles Ty and T of a triangulation of P. Let E be the set of
one, two or three edges of Ts that are not on the boundary of the convex hull of Ty UTs. If
along each edge e € E there is a neighbouring triangle of Ty which is fully visible from Ty,
then Ty is also fully visible from Ty1. If an edge in E is on the boundary of P, then Ts is not
fully visible from Tj.

Proof. Suppose that along each edge in E, there is a neighbouring triangle which is fully
visible from 7. Consider points p € T} and ¢ € Ts. The segment pg can be split into a
segment connecting 77 with a neighbour T of T5, and a segment contained in T'U T5. Both
of these are contained in P because T; fully sees T'.

If, on the other hand, an edge e € F is on the boundary of P, then there are points
p €Ty and g € Tb such that the segment pq crosses e in the interior, and thus part of pq is
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Figure 6 A polygon P with two holes (black) and some triangles from a triangulation shown.
Green triangles are known to be fully visible from T}, red ones are known to be not fully visible
from T7 and for orange ones it is unknown. We conclude that T} is fully visible, as 7> and T3 are.
We cannot conclude right now that 7% is fully visible as T is unknown. We cannot conclude that
Tio is fully visible since Ty is not. We conclude that 741 is not fully visible since an edge not on
the boundary of the convex hull is on the boundary of P. We cannot conclude that Ti2 is not fully
visible, since the one edge not on the boundary of the convex hull is not on the boundary of P.

not in P, so Ty is not fully visible from 7. <

We use the lemma to construct many edges in the visibility graph from a triangle T;. As
explained in Section 2.2, the order in which we consider the other triangles is a BFS order of
the dual graph of the triangulation starting from 7;. A BFS order usually has the property
that if the relevant neighbours of a triangle Ty are fully visible, then these neighbours are
considered before T,. Our algorithm can then conclude that T5 is fully visible.

3.2 Containment in visibility polygons

When we are unable to use the constant-time check from Section 3.1 to conclude whether two
triangles are fully visible from each other, we resort to the following simple lemma instead.

» Lemma 4. Let Q1 and Q2 be two interior-disjoint convex polygons contained in P. Let
L, and Ly be the two outer common tangents of Q1 and Q2. For i € {1,2} and ¢ € {a,b},
let p;e be a vertex of Q; that supports L.. Then the convex hull of Q1 U Q2 is inside P if

and only if p1a fully sees Qo and pay fully sees Q.

Proof. Let T, be the triangle with corners pi4, p2q, p2s and Ty the triangle with corners
P1b, P2b, P1a; See Figure 7. Note that the convex hull of Q1 U Q2 is Q1 UT, U Qo UT,. If p1g
fully sees @2, then Q2 U T, is in the visibility polygon from p1,, so Q2 UT, C P. Likewise,
if pop fully sees QQ1, then Q1 UT, C P. If both hold, the convex hull of @1 U Q> is in P, as
stated. <

We use the lemma in the special case where both @7 and @y are triangles of our
triangulation. Suppose that we do a BFS from @1 before (o when constructing the visibility
graph, as described in Section 2.2. We construct the visibility polygon V; from py, (as well
as visibility polygons from the other corners of @)1). Since V; is star-shaped, we can check in
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Figure 7 Illustration of Lemma 4: The convex hull of @1 and Q2 is contained in P if and only if
P1a sees the quadrilateral F'.

O(log |V1|) time whether the three corners of ()5 are contained in V; with a binary search-like
algorithm. If so, we know that Qo C V; if and only if no edge of V; intersects the interior of
Q2. This is checked using range and segment trees, as described in Section 3.3.

Let V5 be the visibility polygon from po,. We check that @)1 is in V5 in an analogous way
(if we concluded that Q2 C V1). Storing visibility polygons from the corners of all triangles
would require too much memory, so we only store them for the triangle from which we are
currently performing a BFS. We will get the answer as to whether Q1 C Vo when we do
the BFS from @>. Until then, it will be unknown whether or not there should be an edge
between ()1 and @2 in the visibility graph.

Note that instead of checking that Qo C V4 and @1 C V3, we could instead check directly
that the quadrilateral F = T, UTy is in V;. However, as @1 and Q2 are often small, far-apart
triangles, the bounding rectangle of F' may be much larger than those of Q1 and Q2. Hence,
the use of range and segment trees (where we query the range and segment trees with the
bounding rectangle of the object with which we want to check for intersections) would be
much less efficient.

3.3 Containment using range and segment trees

We briefly explain here how we check whether the convex hull @ of a clique is contained in P
in step (3). Since @ is the convex hull of a set of triangles contained in P (that form a clique
in the visibility graph), we note that @Q is contained in P if and only if no vertex of P is in the
interior of @ and no edge of P enters the interior of Q). Let B be the axis-aligned bounding
rectangle of (). Using range and segment trees, we can find the vertices and segments of P
intersecting B in output sensitive O(log?n + k) time, where k is the number of returned
vertices or segments. We can then check whether the returned vertices are in the interior
of @ and whether the edges enter the interior of () using binary search-like algorithms. In
order to construct the visibility graph in step (2), we likewise use range and segment trees
when checking whether a triangle @ is contained in a visibility polygon V', as outlined in
Section 3.2.
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4 Evaluation

In this section we give additional insights into our implementation and the convex covers
that it produces on the Challenge instances.

4.1 Implementation and data

Our code is written in C++ and compiled using GCC 11.3 with -03 optimization turned on.

We use CGAL [12] for all geometric primitives with a Kernel that uses a number type that
saves numbers as fractions and performs exact computations. For the partitioning and to
construct the visibility graph, we use the triangulation, visibility, convex hull and range tree
packages of CGAL [8, 9, 14, 10]. To compute the vertex cover, we use ReduVCC [11]. We
show different types of instances of the problem set in Figure 8.

4.2 Examples

An important part of our approach is the choice of the partition, so in the following we
discuss some of the effects that the different partitions mentioned in Section 2.1 have. While
the Delaunay triangulation is fast to compute, the extension partition creates partitions
with significantly more pieces and thus slows down our approach. To justify this kind of
partition, it must lead to significantly better solutions. Figure 10 shows a cover of the same
instance using the Delaunay partition and the extension partition — one can clearly see that
the extension partition better adapts to the geometry of the input polygon. For example,
consider the long horizontal light blue piece in the solution using the extension partition. A
piece covering the same region cannot be assembled using the Delaunay partition: Any set
of triangles from the Delaunay partition whose convex hull covers the blue piece spreads out
too much vertically and is therefore not contained in the polygon.

Some Challenge instances have long concave chains on the boundary of P. Recall that
the midpoint of each edge of such a chain has to be part of a distinct piece in the convex
cover. To allow for creation of pieces that combine segments from multiple concave chains,
we locally triangulate long concave chains instead of creating extensions. See Figure 11 for
the effect that this partition has; especially, instead of only constructing pieces that contain
parts of two different concave chains, with this partition we create pieces that contain parts
of three concave chains.

Let us give an example of the adaptivity of our approach: In Figure 12 we show our
solution for one of the maze instances. In this instance we want to use many long and thin
pieces to cover the grid. However, at some places in the polygon there are some holes missing,
and there we also want to use larger pieces to cover these areas. Our approach constructs
such a solution, see Figure 12.

Finally, we show a selection of solutions on different instances in Figure 9. We want
to highlight some properties of these solutions. In the solution at the top middle (octa)
of Figure 9, we can observe that many pieces cover otherwise uncovered parts in different
places of the polygon. In other words, the solution very much exploits that the pieces can
overlap. We can see a similar behavior in the bottom left solution (mc). There our algorithm
creates a lot of long pieces: instead of covering each of the “rooms” in the polygon with one
large polygon and the remaining regions with small polygons (as one might at first do when
constructing a cover for an instance like this), it elegantly connects non-convex features in
different places of the polygon and thereby achieves a smaller number of pieces.
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I Figure 8 Examples of instance types cheese, octa, maze, iso, smr, £fpg, mc and smo from left to
right and top to bottom.
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M Figure 9 Solutions to the examples from figure 8. Solutions sizes are 65 for cheese, 22 for octa,
18 for maze, 33 for iso, 1312 for smr, 9 for fpg, 152 for mc and 1179 for smo from left to right and
top to bottom.
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' Figure 10 The Delaunay triangulation (top left) and the resulting cover of size 27 (top right).
The extension partition (bottom left) and the resulting cover of size 23 (bottom right).

M Figure 11 Part of a polygon with multiple long concave chains. While the cover using a Delaunay
triangulation almost exclusively creates pieces adjacent to only two concave chains (left), local
triangulation allows for creation of pieces that contain parts of all three concave chains (right).



M. Abrahamsen, W. B. Meyling, and A. Nusser 4:13

R
=== = = 3
8 ) _—y
H\ e N =E W3]
= o =
o H — D
\ i

=
T
T

e B
| P> "I [[\
Pl | i H
A8 i ! 4 | 8 H
= i i:ﬂﬂ]/] E
== 1
]
= : = =
R H
oy e s b B
o e
P = T
I f | > H—
N m DN |
S R H
- E=. B! =
H S
Bt s |
[ | FH \
i e - ERE R | THE B
== /0 AN L

M Figure 12 The best solution found to a maze instance. A lot of long horizontal and vertical pieces
are used.

4.3 Experiments

For this section, we selected a subset of the instances for more thorough experiments and
subsequently only refer to these. See the sizes and types in the plots of Figure 13. Recall that
we compute an intermediate, potentially infeasible solution via a vertex clique cover that is
subsequently fixed. We argue above that we expect that only few cliques have to be fixed on
practical instances. Indeed, on all except the cheese instances, the solution size increased
by at most 6 pieces when fixing cliques, while most small instances did not have any invalid
clique. However, the largest increase in solution size was for the largest cheese instances with
an increase of 110 pieces. Our algorithm may create redundant cliques that are removed in a
post-processing step, so it is interesting to consider how much this post-processing reduces
the size of the solution. This decrease in pieces is very much dependent on the instance:
While for octa the maximal decrease was 2 pieces, it was 83 pieces for cheese instances and
all larger cheese instances saw significant improvements.

For the competition and our experiments we used a server with two Intel Xeon E5-2690 v4
CPUs with 14 cores (28 threads) each, and a total of 504GB RAM. All reported running
times are single-threaded. The bottleneck of our approach is the visibility graph computation
discussed in Section 2.2. To better understand the trade-off between running time, memory
usage, and solution quality with respect to the choice of partition, we conduct experiments
comparing Delaunay triangulation and extension partition; see Figure 13. The extension
partition introduces a large overhead in running time and memory consumption compared to
the Delaunay triangulation, but it reduces the solution size by a significant fraction. While
for the extension partition the visibility graph computation clearly dominates the running
time, for the Delaunay triangulation it only makes up 32.8% of the running time on average.

'5  Conclusion

We developed a practical algorithm for the computation of convex covers of polygons
(potentially with holes), with the aim of minimizing the number of convex pieces. The
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I Figure 13 Experiments with the Delaunay triangulation (left bars) and the extension partition
(right bars) as underlying partitions for a selected set of instances. We measure the running time
(top left; thin bars showing the running time of the visibility graph computation), memory usage
(top right), solution size (bottom left), and number of edges in the visibility graph (bottom right).
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algorithm follows a three-step approach, where we first compute a partition, then extract
a visibility graph of this partition, and finally solve a vertex clique cover problem on this
graph. We showed that this approach is powerful and versatile. An intuitive explanation for
the success of this approach is that, depending on the instance, we can use different types of

convex partitions which are tailored to the structure of the instance. Additionally, we could

leverage already existing engineered software for the vertex clique cover problem.
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