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—— Abstract
We study some variants of the k-WATCHMAN ROUTES problem, the cooperative version of the classic
WATCHMAN ROUTE problem in a simple polygon. The k watchmen may be required to see the whole
polygon, or some pre-determined quota of area within the polygon, and we want to minimize the
maximum length traveled by any watchman. While the single watchman (k = 1) version of the
problem has received considerable attention and is relatively well understood, much less is known
about the multiple watchmen (k > 1) variant(s).

We provide the first tight approximability results for the anchored k-WATCHMAN ROUTES problem
in a simple polygon, assuming k is fixed, by a fully-polynomial time approximation scheme. The
basis for the FPTAS is provided by an exact dynamic programming algorithm. If k varies (i.e., it is
part of the input), we give constant-factor approximations.

Keywords and phrases Watchman Route, k-Watchman Routes, Quota Watchman Route, Quota
k-Watchman Routes

Digital Object Identifier 10.57717/cgt.v4il.71

Funding This work is partially supported by the National Science Foundation (CCF-2007275)

1 Introduction

1.1 Prior and related work

The ART GALLERY problem was introduced in 1973 by Victor Klee: given an art gallery
with n walls (a polygon P), determine the minimum number of stationary guards needed
within P so that every point inside the gallery is visible to at least one guard. Since then,
the ART GALLERY problem, along with its many variants, has been the focus of extensive
research in computational geometry and algorithms.

When guards are mobile, a single guard can monitor any connected domain. Consequently,
the objective shifts to finding routes for one or more guards that optimize certain aspects of
their movement, such as path lengths or the number of turns. The problem of minimizing the
distance a guard must travel to cover the entire polygon is known as the WATCHMAN ROUTE
problem. Chin and Ntafos introduced the WATCHMAN ROUTE problem, proved that it is
NP-hard in polygons with holes (later revisited in [7]), and provided a linear time algorithm
for simple orthogonal polygons. For general simple polygons, there are exact polynomial-time
algorithms, for example, [6, 20, 21, 22]. In a polygon with holes, Mitchell showed that the
WATCHMAN ROUTE problem cannot be approximated better than an O(logn) factor, and
gave an O(log? n)-approximation.

In some scenarios, complete coverage may be impractical or unnecessary, so we are also
interested in finding the shortest route that covers at least an area of A > 0 within P. This

* A preliminary version of this paper was entitled “Multirobot Watchman Routes in a Simple Polygon”
and appears in the Proceedings of the 36th Canadian Conference on Computational Geometry, St.
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variant is known as the QUOTA WATCHMAN ROUTE problem, introduced in [11]. In contrast
to the tractable WATCHMAN ROUTE problem, the QUOTA WATCHMAN ROUTE problem
is weakly NP-hard, but a fully polynomial-time approximation scheme (FPTAS) is known.
Any results for the QUOTA WATCHMAN ROUTE problem can be applied to the WATCHMAN
ROUTE problem by simply setting A to be the area of P.

We consider the generalization of both aforementioned problems to multiple agents, the
k-WATCHMAN ROUTES problem and the QUOTA k-WATCHMAN ROUTES problem, with the
objective of minimizing the length of the longest path traveled by any one watchman. Even
in a simple polygon, when no starting points are specified (so, we are to determine the best
starting locations), both problems are NP-hard to approximate within any multiplicative
factor [17].

Our focus is thus on the anchored version, where a team of robots or searchers enter a
domain P through a door on its boundary to search for a stationary target that may be
randomly distributed within the domain. The goal is to plan an optimal collective effort to
ensure at least a certain probability of detection (1 in the k-~-WATCHMAN ROUTES problem
and some p € [0, 1] in the QUOTA k-WATCHMAN ROUTES problem).

Little is known about the k-WATCHMAN ROUTES problem in its most general form. Very
recently, Nilsson and Packer [16] proposed some constant-factor approximation algorithms
for when k = 2, their methods however do not extend to larger values of k. Additionally,
some studies have focused on developing and analyzing experimental heuristics [8, 17], but
those approaches lack provable performance guarantees. It was clear that many algorithmic
results for the WATCHMAN ROUTES problem do not generalize to the k-WATCHMAN ROUTES
problem.

1.2 Main results

This paper is an extended journal version of our earlier work that appeared in preliminary

form in [14], and includes some new findings. The main results can be summarized as follows:
Assuming that & is fixed, we give a pseudopolynomial-time exact algorithm to solve the
anchored k-WATCHMAN ROUTES problem in a simple orthogonal (integral coordinate)
polygon P under L; distance. This is a reasonable assumption as in most practical
situations, it is not feasible to employ an arbitrarily large number of watchmen or robots.
For any fixed k, we give an FPTAS for the anchored k-WATCHMAN ROUTES problem
in an orthogonal simple polygon (with orthogonal watchmen movements) and a general
simple polygon. We also argue that the anchored k-WATCHMAN ROUTES problem is
weakly NP-hard, thus our results show tight approximability.
When k is part of the input, we give constant-factor approximation algorithms, for the
anchored k-WATCHMAN ROUTES problem as well as the anchored QUOTA k-WATCHMAN
ROUTES problem. The algorithms given are simple and have low approximation factors
(3or (24 ¢)).

While we restrict ourselves to the anchored version, we achieve better approximation factors

for any k than those proposed by Nilsson and Packer for the case where k = 2 [16] (5.969

and 11.939 when no starting points are given, 6.922 when two starting points, one for each

watchman, are given).

2| Preliminaries

Our domain is a simple polygon P whose boundary, P, is a simple, non-self-intersecting
polygonal chain, consisting of n vertices. A vertex is reflex (resp. convex) if its internal
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angle is greater than (resp. less than) 180 degrees. An orthogonal simple polygon is a simple
polygon where all internal angles are 90 or 270 degrees.

We say that ¢ € P and y € P see each other if the segment xy is contained inside P.
The wvisibility region of z, denoted by V' (z), is defined as the set of all points that x sees, i.e.

V(z) = {y € P:xzy C P}. The visibility region of a segment or route (or any subset) X C P
is the union of the visibility regions of all points of X; or equivalently the set of all points
that see some point of X. Efficient algorithms for computing visibility regions of points and
segments are known, see [9, 23].

The geodesic shortest path from x € P to y € P, which we denote by w(z,y) is a
shortest path between x and y that stays within P. If P is a simple polygon, then 7(z,y) is
necessarily unique and polygonal. The geodesic distance between x and y is the length of
m(x,y) measured in the Ly metric, also called the Euclidean metric. The geodesic shortest
path from x to a set Y C P is 7(z, y) such that the length of 7(z,y) is the minimum among
all y € Y. Throughout this paper, if we use the term “geodesic shortest path”, we mean the
FEuclidean geodesic shortest path. The geodesic convex hull or relative convex hull of X C P
is the minimal subset of P that contains X and is closed under taking shortest paths; one
important property of the relative convex hull is that it is the minimum-perimeter superset
of X within P. We also consider another metric, namely the L; metric, also known as the
Manhattan metric. A polygonal path with all edges parallel to an axis is called a rectilinear
path. A rectilinear path of minimum length between two points that stays within P is called
a geodesic Ly shortest path. Unlike the Euclidean metric, there are, in general, multiple
geodesic L; shortest paths between two points, all of the same length. We denote by 7 (z, y)
a geodesic Ly shortest paths from z to y . Refer to the survey [12] for more details about
geodesic shortest paths and relative convex hulls.

The WATCHMAN ROUTE problem asks for a minimum-length tour that sees all of P. A
vistbility cut c; with respect to the starting point s is a chord obtained from extending the
edge e incident on a reflex vertex, v;, where e is such that its extension creates a convex
vertex at v; in the subpolygon containing s. The other subpolygon (not containing s) is the
pocket induced by ¢;. Furthermore, ¢; is an essential cut if its pocket does not fully contain
any other pocket. The shortest visibility covering tour must visit all essential cuts in order
around OP [5, 6], thus by treating the WATCHMAN ROUTE problem as an instance of the
“touring polygons” problem, we can get a polynomial-time algorithm [6].

The QUOTA WATCHMAN ROUTE problem seeks a minimum-length tour that sees at least
a given amount of area within P. The QWRP is (weakly) NP-hard, and the touring polygons
approach does not apply since we do not have the optimality structure implied by having to
see all of P, which yields a sequence of essential cuts (the watchman may only need to look
“partially” around some corners to achieve the quota) for the tour to visit. By exploiting the
following geometric property: an optimal (complete or partial) visibility covering tour must
be relatively convex (the tour as well as its interior are closed under taking geodesic shortest
paths), we can separate the visibility region of different intervals of the tour. This allows for
a simple dynamic programming algorithm on an appropriate discretization of the domain,
leading to an FPTAS [11].

We consider the generalization of both of the above problems to multiple watchmen.

Denote by |.| the measure of geometric objects (such as length or area). Given a simple
polygon P and a starting point s. The k-WATCHMAN ROUTES problem is that of computing

a collection of k tours {v;};=1,.. x such that |J V(v;) =P and max |v:| is minimized.
i=1,...,

i=1,...,k
Note that each ~; is necessarily a polygonal tour (Corollary 2).
In any multi-agent routing problem, the two commonly studied objective functions are
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min-max and min-sum cost, however, in the context of the k~-WATCHMAN ROUTES problem
with a common starting point for all watchmen, the min-sum version is trivially solvable:
simply take the relative convex hull of {+;};=1,... k, its perimeter is no greater than Zle |7
since all routes are connected (through s), thus we can let one watchman travel the perimeter
of said relative convex hull to see all of P while all others stand still. In other words, the
optimal solution for the min-sum objective is a shortest route for a single-watchman and k —1
degenerate routes of length 0. If the perimeter of the relative convex hull of {~;}i=1, . does
not pass through s, instead of said relative convex hull, we can take the (“nearly relatively
convex”) minimum-perimeter set enclosing {~; }i=1,... x and containing s as a vertex, which is
computable if given s and the set {~;}i=1,.. &, and proceed with a similar argument. With
multiple starting points given, one for each route, the min-sum k-WATCHMAN ROUTES
problem is open but conjectured to be polynomial for fixed k. When no starting points are
given, both the min-sum and min-max versions get significantly harder (no multiplicative
approximation factors possible [17]).

The min-max version remains NP-hard, even with a common depot. In [15], the authors
showed that even for k = 2, the min-max k-WATCHMAN ROUTES without starting points in
a simple polygon is weakly NP-hard via a simple reduction from the PARTITION problem:
given a set of positive integers {1, z2,...,x,}, partition it into two subsets of equal sum.
We utilize the same construction in [15] and simply add a starting point s at the intersection
of all narrow corridors (Figure 1). We see that the anchored version is also NP-hard, since
an optimal solution will have to divide the corridors between the two routes (which might
properly intersect many times) so that the total length of the corridors traversed by each
route is as close to %(1’1 + a2+ ...+ x,) as possible.

The next problem we study, the QUOTA k-WATCHMEN ROUTES problem has the same

U V)

i=1,...k

min-max objective function, but with a generalized constraint of > A for some

given 0 < A < |P|. The fraction of area seen, \%I’ can be interpreted as the probability that
the watchmen detect a target at an unknown location uniformly distributed in P.
Throughout this paper, we assume a real RAM model of computation [18].

3 Multiwatchman routes with a constant number of watchmen

First, we characterize the structure of an optimal collection of k-watchman routes {7; }i=1,.. k-

» Lemmal. |J V(y)=P if and only if {vi}i=1,..k collectively visit all essential cuts
=1,k

of P.

Proof. See Figure 2. Since all routes pass through s, their union is connected. The proof
follows simply from the well-known fact: A connected set sees all of P if and only if it visits
all essential cuts [2, 5, 6]. <

Note that when we have multiple starting points, or no starting points specified at all,
Lemma 1 does not necessarily hold.

For 1 < i <k, denote by C; the set of essential cuts visited by ;. It is worth pointing
out that, due to Lemma 1, each ~; behaves like a solution to the touring polygons problem
on a subset of essential cuts.

» Corollary 2. There exists an optimal solution {7;}i=1,...x such that for any i, v; is the
shortest route to visit all cuts in C; and s in the order in which they appear around OP (more
precisely, the order of the reflex edges whose extensions constitute the essential cuts).
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Figure 1 The construction used in [15] to show NP-hardness of the k~-WATCHMAN ROUTES
problem for fixed k, which we modify slightly to show that the anchored version is also NP-hard.

Figure 2 A simple polygon and its essential cuts (dashed). The 2-watchman routes (red and
blue) visit all essential cuts between them and see the whole polygon.

One immediate observation is that each -; is necessarily a closed polygonal curve, with at
most 2n vertices [6, 13]. It is easy to show that if ¢ # j, then C; N C; = @. Suppose to the
contrary that, there exists ¢ € C; N Cj, then we can replace «y; by the shortest tour that visits
all of C; \ ¢, which is no longer than the shortest tour that visits all of C;.

CGT
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3.1 Orthogonal simple polygon, rectilinear movement

We first consider the special case where P is a simple, orthogonal polygon. Assume that
the watchmen all start from a common starting point s € 9P and can only move along
axis-aligned segments. It is straightforward to see from the construction given in Figure 1 that
this special case is also NP-hard. Further, assume all vertices of P have integer coordinates
(this assumption helps to achieve a pseudopolynomial-time algorithm).

3.1.1 Dynamic programming exact algorithm

We decompose P into rectangular cells using maximal (within P) extensions of all edges,
as well as a horizontal and vertical line through s. This is known as the Hanan grid [10]
(Figure 3). We refer to the set of vertices of the rectangular cells, including vertices of P as
grid points.

s e ... C6 C4 s

_________ [ I

Figure 3 Left: The essential cuts of P. Right: The Hanan grid formed by extensions of all edges
in P.

We show that, given the assumptions of an orthogonal P and rectilinear movement, the
Hanan grid (or in particular, the portion of the Hanan grid on the essential cuts) suffices to
discretize the problem.

» Lemma 3. There exists an optimal solution {~;}i=1,.. 1 that lies within the edges of the
Hanan grid.

Proof. Given an optimal solution {v;}i=1,.. &, for 1 <i <k, let C; = {c1,...,¢i;} (in order

around OP). Also, let p;1,...,p;; be the point where ; first intersects with ¢;1,. .., ¢;j.
First, note that for every ¢, we may replace 7; with a concatenation of geodesic L shortest

paths, namely v; := 71 (s, pi1) Ut (pi1, piz) U ... Ut (pij, 8) without increasing max |7

)

while maintaining complete visibility coverage of P.

Now, we argue that 7 (s,pi1) is a geodesic L shortest path from s to ¢;1. Suppose to
the contrary, that geodesic L; shortest paths from s to ¢;; make contact with ¢;; at piy # pi
(all geodesic Ly shortest paths from a point to a segment have the same endpoint). Due to
orthogonality |7 (s, ply)| + [P}y pir| = |7+ (s, pi1)|, which means |7+ (s, pi1)| + |7+ (pi1, pi2)| =
7 (s 0| + [phapin | + 17 (piv, piz)| = |7 (s, ply)| + [+ (p}1, pi2)|. This implies ; should
take a geodesic L; shortest path from s to ¢;1, and it suffices to find such a path in the
Hanan grid. By a straightforward inductive argument, we can show the same for any portion
of ; between any two essential cuts. <
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Lemma 3 allows us to treat the orthogonal k-watchman problem as that of finding a set
of grid points on the essential cuts (one per cut) that each route ~; visits so as to minimize
the maximum length of any route. Note that we need not consider any grid point that lies
beyond an essential cut.

For the purpose of describing our algorithm, it may be more convenient to think of
each route ; in terms of two components: the path from s to p;;, which we denote by I';
(in particular, T'; := 7+ (s, p;1) U (pi1,piz) U ... U WL(pi(j_l),pij)), and the return trip
T (pig, 8)-

Our algorithm is based on dynamic programming. Let {c1,ca, ..., ¢m} be the set of essen-
tial cuts in order around OP (s lies between ¢; and ¢,,). Each subproblem (c¢;, p1, 01, .. -, Pk, k)
is defined by a (2k + 1)-tuple which consists of

an essential cut c;,

k Hanan grid points p1,...,px, each on one different essential cut among s,ci,...,c;.

One of the grid points p1,...,p; is on ¢;.

k integers Iy, ..., k.

We abuse notation slightly, for the sake of brevity, by using the tuple to also denote the value of
the subproblem in our dynamic programming algorithm. Subproblem (¢;,p1,l1,. .., Pk, lk) =
TRUE if and only if there exists a collection of k paths I'y, ..., Ty collectively visiting all
essential cuts from c; up to ¢; such that

I'; starts at s, ends at p;, and consists of geodesic Lq shortest paths between grid points

on essential cuts,

We call {T';};=1,... x the paths associated with subproblem (c;,p1,l1, ..., Pk, k). See Figure 4
for an illustration.

C1

|F1| — ll D1

ITa| = 2

Ce C4

Figure 4 An example subproblem (c4, p1,l1,p2,l2) = TRUE, I'1 (resp. I'2) is drawn in red (resp.
blue).

For each Hanan grid point p € ¢; and ¢ = 1,...,k, the value of the subproblem
(¢jyp1:la,---spi == Db, ... Dk, li) is computed according to the following disjunction of
valid subproblems

(Cjaplall,"'7pi = paliv" '7pk7lk) = \/(ijlvpl,llv"'vpi = p/ali - |7Tl(pap/)|7"'7pk’lk)

(1)

CGT
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where p’ is taken from the set of all Hanan grid points on the cuts ¢1,...,¢j—1 such that
geodesic Ly shortest paths from p’ to ¢; make contact with ¢; at p (Lemma 3). See Figure 5
for a concrete example of the above recursion.

| ‘@ Pl‘_f___ | ‘@ Pl‘_
Co : Co :
|F1| — ll | |F1| — ll |
T2 =12
s —— C6 Cq s —— Ce Cq
1 D2 lp2
LI : LI |
_________ [es e

IT2| = Iz + |7 (p, p2)

Figure 5 If (c4,p1, 01, p2,12) = TRUE (right), then (cs,p1,l1,p,la + |7 (p, p2)|) = TRUE (left).

The base case is simply (s, s,0,...,s,0) = TRUE. From there, we tabulate all possible
subproblems, take the subproblem (¢, p1,l1,. .., Pk, k) whose value is TRUE with the
minimum 'Irllaxk{li + |7t (pi, s)|} and return the associated paths, each concatenated with

1=1,..

the corresponding return trip to the starting point, specifically {~; := T'; Unt(p;, 8) }iz1,. k-
This gives us an exact optimal solution to the k--WATCHMAN ROUTES problem in an orthogonal
polygon, where the watchmen are restricted to rectilinear movement.
Our proof of correctness relies on two arguments:
If the paths associated with subproblem (¢;_1,p1,l1,...,p; :=p', Li— |7 (0, p)|s- - - s Pry lic)
visit s,¢1,...,¢j—1, then those associated with (¢;,p1,l1,...,p == D,y ..., Pk, li) visit
all essential cuts from s to ¢; since p € ¢;. By induction, the tours {~;}i=1,.. i returned
by the algorithm hence visit all essential cuts.
~; consists of geodesic L; shortest paths between contact points with essential cuts (proof
of Lemma 3). If we identify two consecutive contact points on 7;, say p’ and p in that
order, then the length of the portion of v; from s to p is I; if and only if the length of the
portion of 7; from s to p’ is l; — |7 (p,p')].

3.1.2 Analysis of running time

First we bound the number of subproblems in the dynamic program. There are O(n)
essential cuts, O(n) Hanan grid points on each cut. The length of each tour v; can be trivially
upper bounded by the perimeter of P, |9P|. Hence, in total there are O (n - n?* - |0P|*) =
O (n?**119P|*) subproblems.

We pre-compute and store geodesic L; shortest paths between Hanan grid points, as
well as between Hanan grid points and essential cuts by solving the ALL PAIRS SHORTEST
PATH problem in the embedded graph of the Hanan grid; the running time of this step is
clearly dominated by the dynamic program. Then, we can solve each subproblem by iterating
through O(n?) previously solved subproblems, using recursion (1). The overall running time
of the dynamic program is thus O(n?*+3|0P|*), which is pseudopolynomial for any fixed k.
This is in congruence with the weak NP-hardness from PARTITION, for which there exists an
algorithm polynomial in the number of input integers and the largest input integer.
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We can also achieve a tighter, however straightforward, time bound, which is useful for
deriving the FPTAS. Let L be the length of a shortest single orthogonal watchman route
of P, which is computable in O(n) time if P is simple and orthogonal (simply use the L;
shortest path in the algorithm given in [4] instead of the usual Ly shortest path). Clearly
L < |0P| and min Jmax |7:| < L (one shortest single-watchman route and k — 1 routes of

length 0 is a feasible solution to the k~-WATCHMAN ROUTES problem). Thus, we get a time
bound of O(n2kT3LF).

3.1.3 Fully polynomial-time approximation scheme

The running time of the dynamic programming algorithm depends on the maximum possible
length of the routes. To achieve fully polynomial running time for fixed k, we bound the
number of subproblems by a “bucketing” technique.

Recall in Section 2, we showed that the min-sum version with a common depot is readily
solvable in polynomial time by arguing L < Zle |vi]- Thus

L
7S max |l < L. @)

Given any ¢ > 0, we divide L into f%’ﬂ uniform intervals, each must be no longer than %

The length of any geodesic L shortest path we take into consideration for recursion (1) must

fall into one of the intervals (otherwise, the upper bound  max |vi| < L is violated). We
1=1,...

[RRRE}

round the length of the aforementioned path down to the nearest interval endpoint. Then,
apply the dynamic programming algorithm to the new instance with a slight modification: let
the intervals’ endpoints define the subproblems instead of the k integers l1,lo, ..., ;. Denote
by {7;}i=1,... x the solution returned. For clarity, we denote by d(.) distance/length in the
“rounded down” instance. We have the following chain of inequalities

il > ;) > .
Zznllaxk il = z’:nll,z.%.}.(,kd(%) - Z:rrllaxk d(v;) (3)

The first inequality follows simply from the fact that we round down any distance from
the original instance. The second inequality is by definition, since {7;};=1,..  is an optimal
solution of the new instance.

r consists of at most n geodesic Ly shortest paths between

Hanan grid points on essential cuts, the length of each differs by no more than % between

Now, any route in {7} };=1,

ey

the original instance and the “rounded down” instance. Thus, for any

eL
N_d~))<n- =
il = d(v) <m-
and therefore
el
e () + 55 2 max [l (4)

Combining (2), (3), (4), we get

.....

Thus, we achieve an FPTAS with a running time of O (n2k+3 . ("?k)k) =0 ("3;:3 )
If the watchmen are not constrained to rectilinear movement, then the dynamic program-
ming algorithm and the FPTAS above give a v/2-approximation and a (1/24-¢)-approximation,

respectively, for unconstrained movement (Lg metric).

7:9
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» Theorem 4. For any fized k, the anchored k-WATCHMAN ROUTES problem in a simple
orthogonal polygon has an FPTAS for the Ly metric and a polynomial-time (v/2 + ¢)-
approximation for the Lo metric.

3.2 General simple polygon, unconstrained movement

In our dynamic programming algorithm for the orthogonal anchored k-WATCHMAN ROUTES
problem, by restricting to rectilinear movement and axis-aligned essential cuts, we have a
discrete set of points at which the routes can come into contact with the essential cuts. We
extend that idea to the case in which P is a general simple polygon and the watchmen can
travel in any directions with an appropriate approach to discretization, to achieve an FPTAS.
Naively discretizing the whole of P into a fine grid can be far too computationally expensive.
We overcome this challenge by showing how to localize the problem.

3.2.1 Discretization of P

Denote by GD(r) the geodesic disk of radius r centered at the given starting point s, i.e.
the set of all points with geodesic distance (length of the geodesic shortest path) no greater
r from s. Let 7 = ryin, where i, is the smallest value of r such that V(GDg(r)) = P, that
is, GDs(r) sees everything in P or equivalently, 0GDs(r) is a visibility covering tour of P.
To determine 7y, simply compute the largest geodesic distance from s to any of the O(n)
essential cuts, then GDg(rmiy) touches every essential cut and sees all of P. Consider an
optimal collection of tours {7; }i=1,.. x with the minimum max [7il-

» Lemma 5. 7, < max [vi| < 9nrmin.
i=1

=1,...,

Proof. The geodesic disk GD;, % contains {; }i=1,... x, and therefore must see all

of P (since P is simple and hole-free). By definition 7, is the smallest radius such that
max |7

GDg(rmin) sees all of P, s0 ryi, < i
In this proof, let L be the length of the shortest single-watchman route of P through
s. Clearly, L is an upper bound on Hllan |vi]. We show that L < 9nryi,. Indeed, since

OGDg(rmin) sees all of P, L < |0GDs(Tmin)| + 27min (the right-hand side is the most cost
incurred by traveling around OGDs(rmi,) and the shortest path from s to OGDs(rmin) once
in each direction).

Finally, observe that OG D (rmin) consists of polygonal chains that are portions of P and
at most n circular arcs; the circular arcs have total length no greater than 2n7ry;,. Now, each
segment in the polygonal parts of G Dg(rmin) has its length bounded by the sum of geodesic
distances from its endpoints to s (triangle inequality), which is no more than 2r,;,. There are
at most n segments in the polygonal portions of G Dy (7min ), therefore their total length is no
greater than 2nry,i,, implying |0G D (rmin)|+2rmin < 207 min + 207 min 4 27 min < IMTmin. <

Starting from 7 := ryy, if we repeatedly multiple r by 2, at some point we must have
r < max |y]| < 2r, suppose we have reached this point. Consider a regular square grid

geeey

of pixels of side lengths § (we specify ¢ below) within an axis-aligned closed square box B
of size 2r-by-2r centered on s. The restriction of B within P, P N B contains an optimal
{7i}i=1,.. .k, note that this means B necessarily intersects all essential cuts. We triangulate
P (using any of the numerous known algorithms, for example, the linear-time algorithm
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in [3]), including s as a vertex of the triangulation. The arrangement of the square grid, the
triangulation and the essential cuts decomposes P N B into convex cells, each of perimeter
no greater than 46 (Figure 6). The set of vertices of this decomposition is composed of
intersections between chords of the triangulation, the essential cuts and the axis-aligned grid
lines, as well as vertices of P and the starting point s.
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Figure 6 Discretization and localization of the general anchored k-WATCHMAN ROUTES problem.

We argue that, for purposes of approximation, it suffices to restrict ourselves to grid-
rounded solutions, that is, tours that have vertices among vertices of the decomposition. For
.y 0m (m < 2n) be the (closed) cells of the decomposition
containing the vertices of ;. Some vertices of 7; may lie on the common boundary of
multiple cells, in which case we can choose any of those cells. The relative convex hull of
v, Uoi U...Uogy, is the minimum-perimeter subset of P that contains it, and must thus have
perimeter no greater than |v;| + |0o1| + ...+ |0om| < |vi| + 8nd. Moreover, since o1, ...,0m
are convex and enclose vertices of 7;, the vertices of the relative convex hull v, Uoy U...Uoy,
are vertices of o1,...,0m,.

Hence, for any ¢ > 0, if we let 6 = 8€7sz7 then there exists a grid-rounded tour 7} such
that |v/] < (1 +€)|y]. It is straightforward to argue that +; consists of consecutive geodesic
shortest paths between grid points on some essential cuts (proof of Lemma 3).

an arbitrary i = 1,...,k, let oq,..

3.2.2 Fully polynomial-time approximation scheme

The very same dynamic programming algorithm for the anchored orthogonal k-WATCHMAN
ROUTES works to compute (approximately) {7, };=1,... x, though we require some modifications,
which we have actually introduced. In that algorithm, we have integers defining subproblems
since Hanan grid points have integer coordinates, thus the length of any rectilinear path
we consider is integral. In the general case with the Lo metric, lengths and distances are
potentially irrational even with the assumption that the vertices of P have integer coordinates.
Consequently, there is no natural increment we can set between consecutive values.

We compute the shortest single-watchman route, let its length be L. Recall that we
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argued the following chain of inequalities for rectilinear routes, but the same can be said for
the general case since orthogonality did not play a part in the argument:

L
T < l:Hllan || < L.

We divide L into [%1 uniform intervals and round the length of any geodesic shortest
path we consider in the algorithm down to the nearest interval endpoint. Using the same
analysis of the approximation factor as in the rectilinear routes case, the dynamic program
with subproblems defined by the intervals’ endpoints returns a (1 + ¢)-approximation to
{7/}i=1, .k, which is a (1 + €)?-approximation to {7;}i=1, k-

It remains to show that the dynamic programming algorithm with the above discretization
of P has fully polynomial running time (for fixed k). The number of grid lines within P N B
is O (%) =0 ("?k) Therefore, the number of grid points on the essential cuts (intersections
of essential cuts with triangulation chords and grid lines) is O(n) - O(n) + O(n) - O (%) =

k
0 (%) There are in total O (n (%) : (”k)k> =0 (”22:1) subproblems, each of

€

which requires iterating through O (%) previously solved subproblems. This results in

an overall O (%) running time for the dynamic program, which computes a (1 + £)2-

approximation. Note that if we let 2 + €2 = ¢/, then % =0 (5) as € and ¢’ approach 0,

thus the running time is in the same order when written in terms of &’.
We summarize the description of our algorithm as follows:
Step 1: Compute L, the length of the the shortest single-watchman route for P.
Step 2: Triangulate P.
Step 3: Compute ryin, the smallest value for which G D (rmin) sees all of P. Set r := ryy.
Step 4: Overlay a square grid of J-size pixels within a bounding box B of size 2r-by-2r
onto the triangulation of P and the essential cuts, where § = £L

8nk "
Step 5: If B intersects all essential cuts, execute the dynamic program, output the

collection of routes {7;}i=1,... » and store it.
Step 6: If r < 9nrpi,, then set r := 27, then repeat from Step 4. Else, terminate the
algorithm.

We return the collection {v}};=1,. 5 that minimizes max |vi] out of all collections from all

values of r in the doubling search (henceforth, we use doubling search to refer to recursively
multiplying a quantity by 2 until it is greater than an upper bound). Since the doubling

search for r takes log(9n) = O(logn) iterations, our algorithm runs in time O (% log n)

» Theorem 6. For any fized k, the anchored k-WATCHMAN ROUTES problem in a simple
polygon has an FPTAS.

4  Multiwatchman routes with the number of watchmen as part of the
input

4.1 Seeing all of P

The idea of localizing an optimal set of routes {7;};=1,... x With a geodesic disk whose radius

is no larger than O < max |vi| | gives us a simple constant-factor approximation. Similar

1=1,.
max ||

< =B <) then the geodesic disk of

to the previous section, suppose 7 is such that 5

r
2
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radius r centered on s, GD4(r) sees all of P. Let v C GD4(r) be the shortest route that sees
all of P within GD,(r). Note that +y is not necessarily the overall shortest watchman route of
P, but we can still compute 7 using the polygon touring algorithm [6, 22]. Any essential cut
¢ must intersect GDs(r), a relatively convex set, in a contiguous segment. By applying the
polygon touring algorithm on the segments that are intersection of the essential cuts with
GDg(r), we obtain v. Divide « into k subpaths of equal length, each of which is bounded
by two endpoints a;,a;11 € v (a1 = s = ap41) and denoted by 74,4, ,. Then, return the
collection of routes {;}i=1,...x where v; = 7(s,a;) U7a,a,,, U T(ait1,5).
The approximation algorithm can be summarized in the following steps:

Step 1: Compute 7min, the smallest value for which GDs(7min) sees all of P. Set r := ryy.

Step 2: If GD,(r) intersects all essential cuts, compute v, the shortest route within
GD,(r) that sees all of P using the polygon touring algorithm.

Step 3: Divide v into k subpaths of equal length, each bounded by a;,a;+1 € v (a1 =
5 = ap41) and denoted by vVq,q,. -

Step 4: For each 4, we obtain v; by joining 7(s, a;), Ya;a,, and m(a;41,5).
Step 5: Set r := 2r, then repeat from Step 2, until r» > 9nr,,;,.

Finally, we choose the collection of routes {7;};=1,... r that minimizes max |vi| out of all
i=1,...,

collections from all values of r in the doubling search.
» Theorem 7. The above algorithm is a polynomial-time 3-approximation.

Proof. First, note that Iikl < max [vil < |y]-
=1,

On the other hand, the geodesic distance from any point on 7 to s is no longer than
r. Thus, when r < max |vi| < 2r, any 7/ returned by the algorithm is no longer than
i=1,...,

byor<3 :
R T2rs igﬁfklml-

We can determine r,;, by computing the geodesic distance from s to any of the O(n)
essential cuts in O(n?) time. For each value of r, we execute the O(n3) polygon touring
algorithm [22] and compute the k-collection {~}}i=1, . in O(nk) time. The doubling search
for r takes O(logn) iterations (Lemma 5), thus the algorithm incurs a total running time of
O ((n® + nk)logn) <

. The running time can be made faster, if in Step 2, instead of computing an exact route ~,
we compute a y/2-approximate route by using the linear time approximation algorithm given
by Tan [19]. The approximation factor in that case would be 3v/2 ~ 4.24 and the running
time would be O ((n* + nk)logn).

4.1.1 Improving the approximation factor

In the approximation algorithm earlier, we gradually expand G Ds(r) until GD,(r) contains an
optimal {7;}i=1,. k. If in each iteration, we instead multiply r by a smaller positive number,

_max |y
such as (1+¢), then at some point Tre < =E < r. The distance from each point on 7
. max [7il
to s is then no greater than (1+4¢) 1:1"”2”“ . Hence, the length of any of the k routes returned

max ||
i=1,..., k

by the approximation algorithm is bounded by % +2(14¢)—5—<(2+¢) max [vil-

Loy

There is however, a trade-off between the approximation factor and the number of
iterations of the multiplicative search for r. If we multiply r by (1 4 ¢) each time, the search
requires O(log, . n) iterations. Note that
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In2 1
log; . n= lognm = lognO (6) .

In summary, we can achieve an approximation ratio of (2 + ¢) with a running time of
3 2
) (M), or (2v/2 + ) with a running time of O (%) (by using Tan’s

linear-time approximation algorithm rather than the exact algorithm).
4.2 Seeing a quota of area within P

U Vi)

i=1,...k
minimum. To discretize P and localize {~;}i=1,... 1, we employ a technique similar as before,

Given an area quota A, let {;}i=1,.. 1 be such that

> Aand max |yl is
i=1,....k

only more generalized. Instead of computing the smallest geodesic disk centered at s that
sees all of P, we compute the smallest disk that sees A, the given quota of area. Let ryi, be
the smallest value of r such that |V(GDs(r)] = A. We compute i, using the “visibility
wave” method in [1]. Consider the visibility graph of P, whose nodes are vertices of P and
two nodes are adjacent if they see one another. We sort the geodesic distance from s to
every visibility edge in increasing order in O(n?logn) time. Then, propagate a “wavefront”
through the sequences of visibility edges hit for the first time in the process of increasing r,
stop when |V (GD;(r)| = A.

» Lemma 8. r;, < max, |vi] = O(nrmin)-
i=1,...,

Proof. Identical to that of Lemma 5. |

Lemma 8 allows us to find 7 such that r < max |7i] < 2r by a doubling search from
1=1,...
7 = rmin in O(logn) iterations. Suppose max |v:| < 2r, then GD,(r) contains {v;}i=1,... k-
i=1,...,
We compute (approximately) a shortest tour within GDg(r) that sees at least an area of A,
which we denote by . Such a route must exist, since {7; }i=1,.. x collectively see an area no
smaller than A.

» Lemma 9. [11, Section 3] Given a budget B > 0 and any ¢ > 0, there exists an O (Z—s)

algorithm that computes a Toute of length at most (14 €)B seeing as much area as any route
of length B within GDs(r).

We briefly describe the algorithm for completeness, and refer the readers to [11] for more
details. First, triangulate P, including s as a vertex of the triangulation. Then, overlay onto
the triangulation a regular square grid of side lengths § = O (%) within an axis aligned
square of size B-by-B centered at s.

We consider the set of (convex) cells of the decomposition that overlap (both fully and
partially) with GD,(r) and their vertices, Ss,. Let v be the B-length route within GDy(r)
that achieves the most area of visibility. Then, there exists a route of length at most (1+4¢)B
with vertices coming from Ss, enclosing vp, i.e. the boundary of the relative convex hull of
the cells containing vertices of vg, thus seeing at least as much area as yg (Figure 7).

The dynamic programming algorithm for the BUDGETED WATCHMAN ROUTE problem
can compute a relatively convex closed curve that sees the most with vertices among Ss, .
Sort Ss.» = {s1, S2,...} in (geodesic) angular order around s to acquire a topological ordering
of the subproblems. A subproblem (s;, B) is defined by a point in S5, and a length. Let
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Figure 7 Left: g (red) is a tour no longer than B within Cg4(r) (blue) that sees the most area.

Right: enclosing vp with a tour whose vertices are in S5, seeing everything yp sees (green).

a(s;, B) be the maximum area of visibility that a relatively convex polygonal chain from s
to s; of length no greater than B can achieve, then

a(sj, B) = r?gajxa(si,B — |sisjl) + [V (sisi) \ V(n(s, 50))]

(recall that 7(s, s;) is the geodesic shortest path between s and s;).

Thus, if |y| < B < aly| for some « > 1, we can compute a route 7' of length no longer
than (1 + ¢)|y| with vertices in S5, that sees the most area, which must be no smaller than
[V(yg)| = |V(v)| > A. We show how to acquire a polynomial-sized set of values, from which
we can “guess” B so that B is close to || (in particular, |y| < B < (1 +¢)|y]).

» Lemma 10. ryin < |y] < 9nrmin.
Proof. Identical to that of Lemma 5. <

We divide 9nr,,;» into fg?"] uniform intervals so that each is no longer than er,,;,: the
smallest interval endpoint that is no smaller than || must also be no larger than (1 + ¢)|v|,
and hence is the value of B that we desire. We perform a binary search on the values

{O, 9?@]"" U, 9m“min} as the input budget for the algorithm in Lemma 9, and seek out
the smallest value for which the output route 7’ sees an area no smaller than A. Clearly,
Y] < (1+e)?hl.

We are now ready to describe the approximation algorithm for the QUOTA k-WATCHMEN
ROUTES problem as follows:

Step 1: Set r := ryin.

Step 2: Compute 7/, a (1 + ¢)?-approximation to ~.

Step 3: Divide 7/ into k subpaths of equal length, each bounded by a;,a;11 € «

(a1 = s = ag+1) and denoted by v, ., -

Step 4: For each i, we obtain +; by joining 7 (s, a;) and 7(a;41, S).

Step 5: Set r := 2r, then repeat from Step 2, until r > 9nr,,ip.

/
I ’Yai Qi1

Return the collection of routes {7} };=1,... that minimizes max |7l

i=1,...,

We argue that the algorithm described above has an approximation factor of 3 + &, where
¢ is arbitrarily close to 0. First. we once again note that % < max v < |
i=1,...,

Now, since all our choices for B are no larger than 9nry;,, we can choose an appropriate
§ = O (£2) so that the geodesic distance from any point on 4/ to s is no longer than r + er.
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max |l

Thus, when % < 7i_1""‘

longer than W‘ + 2r + 2er

r, any one of the k routes returned by the algorithm is no
[(1+¢e)?+2+ 25] max |%| = 3+¢). fax ||, where

e

¢ = 4e + 2. Since % =0 (%) as € and & approach 0, the running time is in the same order
when written in terms of either ¢ or €’

<
<

For each choice of B, we execute the O (’E‘—j) algorithm, thus computing an approximation

to v/ for each value of r takes O (’EL—; log (%)) time. Deriving the collection {~}}i=1,... 1 takes
O(nk) time. Since there are O(logn) iterations of the doubling search for r, the overall
running time is O ((" log ( ) + nk) log n)

Similar to the k~-WATCHMAN ROUTES problem, we can improve the approximation factor,
in particular, to (2 + ) by multiplying » with (14 ¢) instead of 2 in the multiplicative search.
The running time in that case, is O (( log ( L) + nk) log")

» Theorem 11. Both the anchored k-WATCHMAN ROUTES problem and the anchored
QUOTA k-WATCHMAN ROUTES problem in a simple polygon have a polynomial-time (2 + ¢)-
approximation.

5 Conclusion and future work

The WATCHMAN ROUTE problem is a classic problem in computational geometry, with
many practical implications. Even though the single-watchman version is well studied, the
multiple watchmen version is much less so. We give tight approximability results when the
number of watchmen is fixed and a common depot is specified, strengthening our theoretical
understanding of the problem. The main source of intractability and approximation hardness
of the problem seems to stem from having multiple depots (or none at all), in which case the
notion of essential cuts is not well-defined, and we do not have a good characterization of
when a set of routes see everything.

Even in the anchored setting, many questions remain open. Can we get a PTAS when £k,
the number of watchmen, is part of the input? Is there a fixed-parameter tractable algorithm?
What about in a polygon with holes? We suspect new ideas and algorithmic techniques are
needed to answer these questions.
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