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Abstract
In this article, we study the cell-structure of simple arrangements of pairwise intersecting pseudocircles.
The focus will be on two problems of Grünbaum (1972).

First, we discuss the maximum number of digons or touching points. Grünbaum conjectured that
there are at most 2n − 2 digon cells or equivalently at most 2n − 2 touchings. Agarwal et al. (2004)
verified the conjecture for cylindrical arrangements. We show that the conjecture holds for any
arrangement which contains three pairwise touching pseudocircles. The proof makes use of the result
for cylindrical arrangements. Moreover, we construct non-cylindrical arrangements which attain the
maximum of 2n − 2 touchings and have no triple of pairwise touching pseudocircles.

Second, we discuss the minimum number of triangular cells (triangles) in arrangements without
digons and touchings. Grünbaum conjectured that such arrangements have 2n−4 triangles. Snoeyink
and Hershberger (1991) established a lower bound of ⌈ 4

3 n⌉. Felsner and Scheucher (2017) disproved
the conjecture and constructed a family of arrangements with only ⌈ 16

11 n⌉ triangles. We provide a
construction which shows that ⌈ 4

3 n⌉ is the correct value.
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1 Introduction

An arrangement A of pairwise intersecting pseudocircles is a collection of n(A) simple closed
curves on the sphere or plane such that any two of the curves either touch in a single point
or intersect in exactly two points where they cross. Throughout this article, we consider
all arrangements to be simple, that is, no three pseudocircles meet in a common point. An
arrangement A partitions the plane into cells. A cell with exactly k crossings on its boundary
is a k-cell, 2-cells are also called digons and 3-cells are triangles. The number of k-cells of an
arrangement A is denoted as pk(A).

The study of cells in arrangements started almost a century ago when Levi [11] showed
that, in an arrangement of at least three pseudolines in the projective plane, every pseudoline
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11:2 Arrangements of Pseudocircles: On Digons and Triangles

is incident to at least three triangles. In the 1970’s, Grünbaum [10] studied arrangements of
pseudolines and initiated the study of arrangements of pseudocircles.

1.1 Digons and touchings
Concerning digons in arrangements of pairwise intersecting pseudocircles, Grünbaum [10]
presented a construction with 2n − 2 digons (depicted in Figure 1) and conjectured that
these arrangements have the maximum number of digons1.

▶ Conjecture 1 (Grünbaum’s digon conjecture [10, Conjecture 3.6]). Every simple arrange-
ment A of n pairwise intersecting pseudocircles has at most 2n − 2 digons, i.e., p2 ≤ 2n − 2.

Figure 1 An arrangement of n ≥ 4 pairwise intersecting pseudocircles with exactly 2n − 2 digons.
Digons are highlighted gray (Example copied from Grünbaum [10, Figure 3.28]).

It was shown by Agarwal et al. [2] that Conjecture 1 holds for simple cylindrical arrange-
ments.

An intersecting arrangement of pseudocircles is cylindrical if there is a pair of cells which
are separated by each pseudocircle of the arrangement. An intersecting arrangement of
pseudoparabolas is a collection of infinite x-monotone curves, called pseudoparabolas, where
each pair of them either have a single touching or intersect in exactly two points where they
cross. Every cylindrical arrangement of pseudocircles can be represented as an arrangement
of pseudoparabolas and vice versa. From an arrangement of pseudoparabolas one can directly
obtain a drawing of an arrangement of pseudocircles on the lateral surface of a cylinder so
that the pseudocircles wrap around the cylinder. The two separating cells correspond to the
top and the bottom of the cylinder. The top and bottom cell may have degree two, they
account for the difference of two between the conjecture and the result for pseudo-parabolas.

More precisely Agarwal et al. [2] showed that the number of touchings in an intersecting
arrangement of n pseudo-parabolas is at most 2n − 4 [Theorem 2.4] and in an intersecting
cylindrical arrangement it is at most 2n − 3 [Corollary 2.12]. They extended this by showing
that intersecting arrangements of pseudocircles the number of digons is at most linear in n

[Theorem 2.13]. The proof of the last result is based on the fact that every arrangement of
intersecting pseudocircles can be stabbed by constantly many points. That is, there exists
an absolute constant k, called the stabbing number2, such that for every arrangement of n

pseudocircles in the plane there exists a set of k points with the property that each pseudocircle

1 Originally the conjecture was stated as to include non-simple arrangements which are non-trivial, i.e.,
non-simple arrangements with at least 3 crossing points.

2 In the literature, the stabbing number is also referred to as piercing number or transversal number.
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contains at least one of the points in its interior region [2, Corollary 2.8]. Therefore, the
arrangement can be decomposed into constantly many cylindrical subarrangements. The
linear upper bound then follows from the fact that each pair of subarrangements contributes at
most linearly many digons. Grünbaum’s digon conjecture is known to hold for arrangements
with up to 7 pseudocircles; see [8].

The conjecture has also been studied for proper circles. Alon et al. [3] proved that
every arrangement of n pairwise intersecting circles contains at most 20n − 2 digons. For
arrangements of pairwise intersecting unit circles, Pinchasi [12] proved that there are at
most n + 3 digons. Very recently Ackerman et al. [1] verified Grünbaums digon conjecture
for circles.

In this paper we show that Grünbaum’s digon conjecture (Conjecture 1) holds for
arrangements which contain three pseudocircles that pairwise form a digon. Before we
state the result as a theorem, let us introduce some notation. For an arrangement A of
pseudocircles and any selection of its digons, we can perform a perturbation so that the
selected digons become touching points. Figure 2 gives an illustration. It is therefore sufficient
to find an upper bound on the number of touchings to prove Grünbaum’s digon conjecture.
We define the touching graph T (A) to have the pseudocircles of A as vertices, and two
vertices form an edge if the two corresponding pseudocircles touch.

Figure 2 Contracting some digons to touchings.

▶ Theorem 2. Let A be a simple arrangement of n pairwise intersecting pseudocircles. If
the touching graph T (A) contains a triangle, then there exist at most 2n − 2 touchings,
i.e., p2(A) ≤ 2n − 2.

Theorem 2 in particular shows that Grünbaum’s construction with 2n − 2 touchings is
maximal for arrangements with triangles in the touching graph. However, the maximum
number of touchings in general arrangements remains unknown. In Section 3 we construct a
family of arrangements of n pairwise intersecting pseudocircles which have exactly 2n − 2
touchings and a triangle free touching graph. This family witnesses that the conjectured
upper bound (Conjecture 1) can also be achieved in the cases not covered by Theorem 2.

▶ Proposition 3. For n ∈ {11, 14, 15} and n ≥ 17 there exists a simple arrangement An of n

pairwise intersecting pseudocircles with no triangle in the touching graph T (An) and with
exactly p2(An) = 2n − 2 touchings.

1.2 Triangles in digon-free arrangements
In this context we assume that all arrangements are digon- and touching-free. It was shown
by Levi [11] that every arrangement of n pseudolines in the projective plane contains at
least n triangles. Since arrangements of pseudolines are in correspondence with arrangements

CGT
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of great-pseudocircles (see e.g. [7, Section 4]), it follows directly that an arrangement of n

great-pseudocircles contains at least 2n triangles, i.e., p3 ≥ 2n.
Grünbaum conjectured that every digon-free intersecting arrangement on n pseudocircles

contains at least 2n − 4 triangles [10, Conjecture 3.7]. Snoeyink and Hershberger [14]
proved a sweeping lemma for arrangements of pseudocircles. Using this powerful tool, they
concluded that in every digon-free intersecting arrangement every pseudocircle has two
triangles on each of its two sides (interior and exterior). This immediately implies the lower
bound p3(A) ≥ 4n/3; see Section 4.2 in [14].

An infinite family of digon-free arrangements of intersecting pseudocircles with p3 < 16
11 n

was constructed in [8]. This family shows that Grünbaum’s conjecture is wrong. With com-
puter assistence [8], it was also verified that the lower bound p3 ≥ 4n/3 is tight for 6 ≤ n ≤ 14.
Here we show that the bound is tight for all n ≥ 6:

▶ Theorem 4. For every n ≥ 6, there exists a simple digon-free arrangement An of n pairwise
intersecting pseudocircles with p3(An) = ⌈ 4

3 n⌉ triangles. Moreover, these arrangements are
cylindrical.

The construction that we use for proving Theorem 4 is based on replacing pseudocircles
by bundles of pseudocircles. Starting from any digon-free arrangement, we can extend it to a
counterexample of Grünbaum’s triangle conjecture:

▶ Theorem 5. For ε > 0 fixed, every digon-free arrangement A of n pairwise intersecting
pseudocircles is contained as a subarrangement in a digon-free arrangement Â of n̂ pairwise
intersecting pseudocircles with p3(Â) < ( 4

3 + ε)n̂.

For n = 6 there is a unique intersecting digon-free arrangement which minimizes the
number of triangles. This arrangement N ∆

6 (see Figure 17) has been shown to be non-
circularizable in [7], i.e., N ∆

6 cannot be represented as an arrangement of proper circles.
All counterexamples to Grünbaums conjecture presented in [8] as well as the arrangements
constructed in the proof of Theorem 4 contain N ∆

6 as a subarrangement. Hence, all these
arrangements are non-circularizable. The following weakening of the original Grünbaum
conjecture has been stated as Conjecture 2.2 in [8].

▶ Conjecture 6 (Weak Grünbaum triangle conjecture). Every simple digon-free arrangement A
of n pairwise intersecting circles has at least 2n − 4 triangles.

To prove the conjecture it would be enough to verify that every simple intersecting
digon-free arrangement of n pseudocircles with less than 2n − 4 triangles contains N ∆

6 as
a subarrangement. This, however, is wrong. There are counterexamples to Grünbaum’s
conjecture without N ∆

6 as a subarrangement. In Subsection 4.2, we prove the following
proposition and discuss additional constructions.

▶ Proposition 7. There is an infinite family of simple intersecting digon-free arrangements
of n pseudocircles with ⌈ 5

3 n⌉ + 2 triangles which have no subarrangement isomorphic to N ∆
6 .

1.3 Related Work and Discussion
In the proof of Theorem 2, we make use of a triangle (K3) in the touching graph to bound
the number of digons in the arrangement. It would be interesting to know whether other
subgraphs like C4 or K3,3 can also be used to bound the number of digons.

The focus of this article is on arrangements of pairwise intersecting pseudocircles. For the
setting of arrangements, where pseudocircles do not necessarily pairwise intersect, a classical
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construction of Erdős [5] gives arrangements of n unit circles with Ω(n1+c/ log log n) touchings.
An upper bound of O(n3/2+ϵ) on the number of digons in circle arrangements was shown by
Aronov and Sharir [4]. The precise asymptotics, however, remain unknown. Moreover, we
are not aware of an upper bound for pseudocircles.

▶ Problem 1. Determine the maximum number of touchings among all simple non-inter-
secting arrangements of n circles and pseudocircles, respectively.

Concerning intersecting arrangements with digons, the number of triangles behaves
different than in digon-free arrangements. While the lower bound is p3 ≥ 2n/3, we know
that in the range of 3 ≤ n ≤ 7 the correct bound is p3 ≥ n − 1, this was obtained using a
computer-assisted exhaustive enumeration [8]. This motivates the conjecture:

▶ Conjecture 8 ([8, Conjecture 2.10]). Every simple arrangement of n ≥ 3 pairwise inter-
secting pseudocircles has at least n − 1 triangles, i.e., p3 ≥ n − 1.

Dropping the condition that the arrangements are intersecting seems non-interesting
at first: arrangements of pairwise non-intersecting circles have no triangles. If we add the
condition that the intersection graph of the circles is connected we still have arrangements
with a bipartite intersection graph where all faces are of even length, hence, there are no
triangles. In the case where the intersection graph is connected and digons are forbidden
triangles are unavoidable, in fact for all n ≥ 3 there are arrangements in this class with
only 8 triangles and this is the minimum.

Concerning the maximum number of triangles in intersecting arrangements, Felsner and
Scheucher [8] have shown an upper bound p3 ≤ 4

3
(

n
2
)

+ O(n) which is optimal up to a linear
error term. In fact, while 4

3
(

n
2
)

is an upper bound for arrangements of great-pseudocircles, we
found an intersecting arrangement (n = 7) with no digons, no touchings, and 29 = 4

3
(7

2
)

+ 1
triangles. We are not aware of an infinite family of such arrangements.

▶ Problem 2. Determine the maximum number of triangles of simple arrangements of n

pairwise intersecting pseudocircles.

2 Proof of Theorem 2

▶ Theorem 2. Let A be a simple arrangement of n pairwise intersecting pseudocircles. If
the touching graph T (A) contains a triangle, then there exist at most 2n − 2 touchings,
i.e., p2(A) ≤ 2n − 2.

Proof. Since the touching graph T (A) contains a triangle, there are three pseudocircles in A
that pairwise touch. Let K be the subarrangement induced by these three pseudocircles and
let △ and △′ denote the two open triangle cells in K. We label the three touching points,
which are also the vertices of △ and △′, as a, b, c. Furthermore, we label the three boundary
arcs of △ (resp. △′) as α, β, γ (resp. α′, β′, γ′), as shown in Figure 3a.

Assume that all digons in A are contracted to touchings. In the following, the arrangement
in Figure 5 will serve as a running example for A. The intersection of a pseudocircle C ∈ A\K
with △ ∪ △′ results in three connected segments, which we denote as the three pc-arcs of C;
see Figures 3b and 3c. Note that two of the pc-arcs induced by C may share an endpoint
if C forms a touching with one of the pseudocircles from K; in the example arrangement in
Figure 5, this occurs 5 times on the boundary of △ and 4 times on the boundary of △′.

Each pc-arc in △ connects two of α, β or γ while a pc-arc in △′ connects two of α′, β′

and γ′. Depending on the boundary arcs on which they start and end, they belong to one of

CGT
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c

a

b

α′
α

ββ′

γγ′

4

4′

(a)

c

a

b

(b)

c

a

b

(c)

Figure 3 (a) An illustration of the subarrangement K. (b) and (c), respectively, illustrate an
additional pseudocircle C (red), the pc-arcs inside △ ∪ △′ are highlighted.

the types αβ, βγ, αγ, α′β′, β′γ′ or α′γ′. Figure 6 shows the regions of △ and △′ together
with the pseudocircles passing through them; Figure 7 shows the same regions but the arcs
are colored according to their type in blue (αβ, α′β′), red (βγ, β′γ′) or blue (αγ, α′γ′).

▷ Claim 9. If two pc-arcs inside △ (resp. △′) have a touching or cross twice, then they are
of the same type.

Proof of Claim 9. We prove the claim for △; the argument for △′ is the same. Suppose towards
a contradiction that two distinct pseudocircles C, C ′ from A \ K contain pc-arcs A ⊂ C ∩ △
and A′ ⊂ C ′ ∩ △ of different types that have a touching or cross twice. For simplicity,
consider only the arrangement induced by the five pseudocircles K ∪ {C, C ′}. By symmetry
we may assume that A is of type αγ and A′ is of type αβ. We may further assume that A

and A′ have a touching, since otherwise, if they cross twice, they form a digon and we can
contract it. This allows us to distinguish four cases which are depicted in Figure 4 (up to
further possible contractions of digons formed between C and the pseudocircles of K).

Case 1: C separates a from b and c.
Case 2: C separates b from a and c.
Case 3: C separates c from a and b.
Case 4: C does not separate a, b, c.

In the next paragraph we show that in neither case is it possible to extend the arc A′ to a
pseudocircle C ′ intersecting the three pseudocircles of K. This is a contradiction.

Extend A′ starting from its endpoint on α. The only way to reach γ or γ′, avoiding
an invalid, additional intersection with C, is via the pseudocircle β ∪ β′. But the other
endpoint of A′ already lies on β, so either the pseudocircle extending A′ has at least three
intersections with β∪β′ or it misses γ∪γ′. Both are prohibited in an intersecting arrangement
extending K.

This completes the proof of Claim 9. △

Next we transform A into another intersecting arrangement A′ by redrawing the pc-arcs
within △ and △′ such that the pairwise intersections and touchings are preserved and all
crossings and touchings of each arc type are concentrated in a narrow region as depicted in
Figure 8. First we apply an appropriate homeomorphism on the drawing so that △ becomes a
proper triangle (△′ will be treated in an analogous manner); see again Figure 6 and Figure 7.
For the arc type αβ we place a small rectangular region Rαβ within △ that lies close to the
vertex c. We now redraw all pc-arcs of type αβ so that

all crossings and touchings between pc-arcs of type αβ lie inside Rαβ ,
every pc-arc of type αβ intersects Rαβ on opposite sites, and
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c

a

b

γ
α

β

α′

γ′

β′

(a)

c

a

b

γ
α

β

α′

γ′

β′

(b)

c

a

b

γ
α

β

α′

γ′

β′

(c)

c

a

b

γ
α

β

α′

γ′

β′

(d)

Figure 4 (a)–(d) illustrate Cases 1–4 from the proof of Claim 9. The pseudocircles C and C′ are
highlighted blue and red, respectively. The pc-arcs A and A′ are emphasized.

for every pc-arc of type αβ, the removal of Rαβ leaves two straight line segments which
connect Rαβ to α and β (i.e., the boundary segments of △).

We proceed analogously for the arc types αγ and βγ. By Claim 9 touchings and double
crossings only occur between pc-arcs of the same type and therefore lie in the rectangular
regions. Since the rectangular regions are placed close enough to the vertices a, b, c of the
triangle △, no additional intersections or touching points are introduced and we obtain an
arrangement A′ of pseudocircles with the same intersections and touchings as A. The combi-
natorics of the resulting arrangement A′ may however differ from A since the transformation
typically changes the intersection orders of the pseudocircles. We conclude:

▶ Observation 10. The transformation preserves the incidence relation between any pair of
pc-arcs, that is, two pc-arcs in A are disjoint/cross in one point/cross in two points/touch if
and only if the two corresponding pc-arcs in A′ are disjoint/cross in one point/cross in two
points/touch.

This implies that A′ is indeed again an arrangement of n(A′) = n(A) pairwise intersecting
pseudocircles with identical touching graph T (A′) = T (A). In particular, the number of
touchings is preserved.

▷ Claim 11. The arrangement induced by A′ \ K is cylindrical.

Proof of Claim 11. For each pseudocircle C ∈ A′ \ K, the intersection

C ∩ (△ ∪ △′) = (C ∩ △) ∪ (C ∩ △′)

CGT
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a

c

b △

△′

Figure 5 Original arrangement A

α

γ β

a

cb

(a)

α′

γ′ β′

a

cb

(b)

Figure 6 Area △ (a) and area △′ (b), colors as in A.

consists of three pc-arcs, and each of these three pc-arcs is of a different type. The first arc
is of type αβ or α′β′ (depending on whether it is inside △ or △′), the second is of type βγ

or β′γ′, and the third is of type αγ or α′γ′.
Now we redraw A′ on a cylinder as illustrated in Figure 9. Since all crossings and

touchings of the arc type are within a small region, all pseudocircles from A′ \ K wrap around
the cylinder, and hence the arrangement induced by A′ \ K is cylindrical.

This completes the proof of Claim 11. △

Next we replace the three pseudocircles of K by six pseudocircles as illustrated in the
left part of Figure 10, so that the resulting arrangement A′′ is cylindrical. Each of the
three touching points a, b, c in K is replaced by two new touching points and altogether we
obtain touchings a′, a′′, b′, b′′, c′, c′′. Hence, when transforming A into A′′, the number of
pseudocircles is increased by 3 and the number of touchings is also increased by 3.

Agarwal et al. [2] proved the p2 ≤ 2n − 3 upper bound on the number of touchings in
cylindrical arrangements of n pairwise intersecting pseudocircles by bounding the number of
touchings in an arrangement of pairwise intersecting pseudoparabolas. They show that their
touching graph is planar and bipartite [2, Theorem 2.4], hence, it has at most 2n − 4 edges.
The difference between 2n − 4 and 2n − 3 comes from the fact that the upper or the lower
face in the pseudoparabola drawing of a pseudocircle arrangement A can be a digon of A.
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α

γ β

a

cb

(a)

α′

γ′ β′

a

cb

(b)

Figure 7 Area △ (a) and area △′ (b), colors according to arc-type.

α

γ β

a

cb

Rβγ

R
αγ Rαβ

(a)

α′

γ′ β′

a

cb

Rβ′γ′

R
α ′γ ′ Rα

′ β
′

(b)

Figure 8 Area △ (a) and area △′ (b). Concentrate all crossings and touchings of one arc type in
a narrow region. The narrow regions are indicated by dashed rectangles.

The drawing of A′′ in Figure 10 can be seen as an intersecting arrangement of pseu-
doparabolas. The complexity of the upper and of the lower face is three, hence, the
arrangement has at most 2n(A′′) − 4 touchings.

We review the ideas of the proof of Agarwal et al. [2] to verify the following claim.

▷ Claim 12. T (A′′) is planar, bipartite, and has at most 2n(A′′) − 5 edges.

Proof of Claim 12. Label the pseudoparabolas P1, . . . , Pn such that the starting segments
are ordered from top to bottom. In the touching graph T (A′′), we label the corresponding
vertices as 1, . . . , n.

Bipartiteness: The bipartition comes from the fact that the digons incident to a
fixed pseudoparabola Pj are either all from below or all from above. Suppose that a
pseudoparabola Pj has a touching from above with Pi and from below with Pk. It follows
that Pi is above Pj everywhere and Pk is below Pj everywhere. Hence, Pi and Pk are
separated by Pj and cannot intersect – this contradicts the assumption that the pseudocircles
are pairwise intersecting.

We now further observe that the uppermost pseudoparabola P1 and the lowermost
pseudoparabola Pn belong to distinct parts of the bipartition, because P1 has all touchings

CGT
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a c b

△

△′

RαβRβγ Rαγ

Rα′β′Rβ′γ′ Rα′γ′

Figure 9 A cylindrical drawing of A′ \ K

a′′

a′

c′′

c′

b′′

b′

Figure 10 Replace each of the three pseudocircles of K by two new pseudocircles so that the
entire arrangement is now cylindrical. The pseudocircle from Figure 9 that contains the points a

and c (resp. points c and b / points b and a) is replaced by a new dark red and a new bright red
(resp. dark green and bright green / dark blue and turqoise) pseudocircle. The right part shows the
corresponding touching graph.

below (i.e. with parabolas of greater index); Pn has all touchings above (i.e. with parabolas
of smaller index). Hence, the touching graph remains bipartite after adding the edge {1, n}.

Planarity: For the planarity of T (A′′), Agarwal et al. [2] create a particular drawing:
The vertices are drawn on a vertical line and each edge e = {u, v} is drawn as an y-monotone
curve according to the following drawing rule: For each w with u < w < v, we route e to the
left of w if the pseudoparabola Pw intersects Pu before Pv, otherwise we draw the edge e right
of w. It is then shown that in the so-obtained drawing D, each pair of independent edges
has an even number of intersections. The right part of Figure 10 shows such a drawing of
the corresponding touching graph. The Hanani–Tutte theorem (cf. Section 3 in [13]) implies
that T (A′′) is planar.

Notice that {1, n} is not an edge in T (A′′), since by construction, the lowermost and
uppermost pseudocircles do not touch. We further observe that, since all edges in D are
drawn as y-monotone curves, the entire drawing lies in a box which is bounded from above
by vertex 1 and from below by vertex n. Hence, we can draw an additional edge from 1 to n

which is routed entirely outside of the box and does not intersect any other edge. Again, by
the Hanani–Tutte theorem, we have planarity. Since any planar bipartite graph on n vertices
has at most 2n − 4 edges, we conclude that T (A′′) has at most 2n − 5 edges.

This completes the proof of Claim 12. △
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We are now ready to finalize the proof of Theorem 2. From Claim 12 and n(A′′) = n + 3
we get p2(A′′) ≤ 2(n + 3) − 5. Since p2(A′′) = p2(A) + 3 this implies p2(A) ≤ 2n − 2, which
is the desired bound. ◀

3 Proof of Proposition 3

The proof of Proposition 3 is based on the blossom operation, which allows to dissolve
triangles in the touching graph. We will apply the blossom operation to arrangements whose
touching graphs are wheel graphs to obtain arrangements with the desired properties.

Let A be an arrangement of pairwise intersecting pseudocircles, let v be a pseudocircle
in A, and let w1, . . . , wd be the pseudocircles in A which form touchings with v in this
particular circular order along v. Since A is intersecting, all the touchings are on the same
side of v. As illustrated in Figure 11, the blossom operation relaxes the touchings between v

and w1, . . . , wd to digons and inserts d new pseudocircles v′
1, . . . , v′

d inside and very close to v

so that
v′

1, . . . , v′
d form a cylindrical arrangement,

v touches v′
1, . . . , v′

d, and
wi touches v′

i−1 and v′
i (indices modulo d).

Since the new pseudocircles v′
1, . . . , v′

d are added in an ε-small area close to v, it is ensured
that each v′

i intersects all other pseudocircles. Hence, the obtained arrangement is again an
arrangement of pairwise intersecting pseudocircles.

v

w1

w2

w3w4

w5
ε

ε

w1

w2

w3w4

w5

v

v′4

v′5

v′1

v′2

v′3

Figure 11 An illustration of the blossom operation applied on the pseudocircle v of an arrangement.

Figure 12 shows the effect of the blossom operation on the touching graph. Note that in
these graph drawings the circular orders of the edges incident to a vertex coincide with the
orders in which the touchings appear on the corresponding pseudocircle.

The blossom operation increases the number n(A) of pseudocircles of arrangement A by d

and the number p2(A) of touchings by 2d. Hence, when applied to an arrangement A with
exactly p2(A) = 2n(A) − 2 touchings, the blossom operation again yields an arrangement A′

with p2(A′) = 2n(A′) − 2 touchings.
The blossom operation can be used to eliminate triangles in the touching graph. Assume

pseudocircles wi and wj touch, hence v, wi, wj form a triangle in the touching graph. Then
the blossom operation on v destroys this triangle without creating a new one if and only if,
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v

v′5 v′1

v′2

v′3

v′4

v

w1

w2

w3w4

w5

w1

w2

w3w4

w5

Figure 12 Blossom operation applied on v: Modification of the touching graph.

along the pseudocircle v, the two touchings with wi and wj are not consecutive. In Figure 12 a
triangle {v, w1, w2} would result in the new triangle {v′

1, w1, w2}, while a triangle {v, w1, w3}
would be eliminated without replacement.

Using the blossom operation, we are now able to prove Proposition 3.

▶ Proposition 3. For n ∈ {11, 14, 15} and n ≥ 17 there exists a simple arrangement An of n

pairwise intersecting pseudocircles with no triangle in the touching graph T (An) and with
exactly p2(An) = 2n − 2 touchings.

Proof. Let n′ ≥ 11 be an integer with n′ ≡ 3 (mod 4). Then n = n′+1
2 is an even integer

with n ≥ 6. As illustrated in Figure 13a and Figure 13b, we can construct an arrangement
A of n pseudocircles with p2 = 2n − 2 touchings such that the touching graph T (A) is the
wheel graph Wn.

In this construction the central pseudocircle v has a touching with each of the pseudo-
circles w1, . . . , wn−1 and each wi touches v, wi+n/2, and wi−n/2 (indices modulo n − 1); see
Figure 13c.

All triangles in T (A) contain the central vertex v and for each such triangle {v, wi, wj},
the touchings of the pseudocircles wi and wj with the pseudocircle v are not consecutive on v.
Therefore, applying the blossom operation to v eliminates all triangles and the resulting
arrangement A′ of n′ = 2n − 1 pairwise intersecting pseudocircles has p2(A′) = 2n′ − 2
touchings and a triangle-free touching graph T (A′); see Figure 13d. This completes the
argument for n′ ≥ 11 with n ≡ 3 (mod 4).

To give a construction for n′′ = 14 and for all integers n′′ ≥ 17, note that the blossom
operation can be applied to pseudocircles with exactly three touchings. The constructed
examples with n ≡ 3 (mod 4) have pseudocircles with three touchings and the blossom
operation applied to such a pseudocircle preserves the property.

Since n′′ = 14 and every integer n′′ ≥ 17 can be written as n′ + 3k with n′ ∈ {11, 15, 19}
and k ∈ N ∪ {0}, we obtain arrangements A′′ of n′′ pseudocircles with p2(A′′) = 2n′′ − 2
touchings. This completes the proof of Proposition 3. ◀

4 Digon-free arrangements with few triangles

4.1 Proof of Theorem 4 and Theorem 5
The proofs of Theorem 4 and Theorem 5 are both based on replacing pseudocircles by
canonical bundles of 4 pseudocircles, as shown in Figure 14. Like in the blossom operation,
the new pseudocircles are placed within an ε-small area around the replaced pseudocircle
so that the intersecting property of the pseudocircles is being preserved. We call such an
operation a bundle replacement and aim for performing them on pseudocircles in order to
destroy some of their incident triangles.
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w1

w2

w3

w4

w5

v

(a)

v

w1 w2 w3 w4 w5

(b)

v

w1

w2

w3w4

w5

(c)

w1

w2

w3w4

w5

v

v′5 v′1

v′2

v′3

v′4

(d)

Figure 13 (a) An arrangement A of 6 pseudocircles, (b) its cylindrical representation, (c) its
touching graph T (A), and (d) the touching graph T (A′) after applying the blossom operation to v.

The following fact is a direct consequence of a sweepability statement by Snoeyink and
Hershberger [14].

▶ Proposition 13 ([14, Lemma 4.1]). In a digon-free arrangement of pairwise intersecting
pseudocircles, each pseudocircle is incident to at least two triangles to the inside and two
triangles to the outside.

▶ Theorem 5. For ε > 0 fixed, every digon-free arrangement A of n pairwise intersecting
pseudocircles is contained as a subarrangement in a digon-free arrangement Â of n̂ pairwise
intersecting pseudocircles with p3(Â) < ( 4

3 + ε)n̂.

Proof. Let A be a digon-free arrangement of intersecting pseudocircles. Select a pseudocircle p

in A. Figure 15 illustrates a situation which might have been obtained via a bundle
replacement on p. Note that a bundle replacement leads to a new arrangement A′ which is
again digon-free and contains A as a subarrangement.

We can think of the new bundle as being composed of four sections that are delimited by
the four twists starting and ending in the purple crossings; colors refer to Figure 15. For a
precise description we define a twist in a bundle as a sequence of consecutive crossings which
make the outermost pseudocircle of the bundle the innermost. In all of our figures we keep
the crossings of a twist close together.

Proposition 13 guarantees that p is incident to at least 4 triangles. Observe that the four
twists in the bundle can always be distributed in such a way that each of these 4 triangles
becomes incident to one of the twists, hence, the triangles are turned into quadrangles (green
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Figure 14 Bundle replacement: a pseudocircle is replaced by a bundle of 4 pseudocircles.

cells). On the other hand, in each of the 8 red areas, independent of the number of crossing
pseudocircles (gray), exactly one new triangle is created.

In total, a careful bundle replacement on p leads to a digon-free arrangement A′

with p3(A′) ≤ p3(A) + 4 which contains A as a subarrangement. This procedure can
be iterated. Each iteration increases the number of pseudocircles by 3 and the number of
triangles by at most 4.

Let t be the number of triangles of the initial arrangement A. If m ≥ t/3ε, then the
arrangement Â obtained through a sequence of m bundle replacements has the claimed
property: p3(Â) ≤ t + 4m ≤ (4/3 + ε)3m < (4/3 + ε)n̂. ◀

Figure 15 Situation obtained by a bundle replacement.

(a) (b)

Figure 16 The two intersecting simple arrangements of three pseudocircles. (a) Krupp,
(b) NonKrupp.
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▶ Theorem 4. For every n ≥ 6, there exists a simple digon-free arrangement An of n pairwise
intersecting pseudocircles with p3(An) = ⌈ 4

3 n⌉ triangles. Moreover, these arrangements are
cylindrical.

Proof. Figure 16 shows the two intersecting simple arrangements of three pseudocircles. The
Krupp is digon free and has 8 triangle cells. Note that the Krupp can be obtained from a
single isolated circle in a bundle replacement step with a bundle of size three. Replacing
any of the circles of the Krupp with a bundle of size four we can convert all the original
triangles to 4-gons while generating eight new triangles. The result is the arrangement N ∆

6
from Figure 17 with 6 pseudocircles and eight triangles. Starting from N ∆

6 , we can iterate
the bundle replacement with bundles of size four; this yields a family of arrangements A3k

with n = 3k pseudocircles and 4k = 4
3 n triangles.

Figure 17 The non-circularizable digon-free intersecting arrangement N ∆
6 .

For values of n which are not divisible by 3, we can take the arrangement A3k with k = ⌊ n
3 ⌋

and apply a bundle replacement step with a bundle of size two (for n = 3k + 1) or three
(for n = 3k + 2). In the first case, we can eliminate two old triangles at the cost of
creating four new ones; hence, the new arrangement A3k+1 has n = 3k + 1 pseudocircles
and 4k + 2 = ⌈ 4

3 n⌉ triangles. In the second case, we can eliminate three old triangles at
the cost of creating six new ones and obtain a new arrangement A3k+2 with n = 3k + 2
pseudocircles and 4k + 3 = ⌈ 4

3 n⌉ triangles. ◀

4.2 Proof of Proposition 7
In this subsection we construct intersecting digon-free arrangements with few triangles
(less than 2n − 4) and no N ∆

6 subarrangement. The key to the construction is again the
replacement of pseudocircles of a base arrangement by bundles. In the following proof we
use bundles of size 3. In the discussion we will also mention size 4 and larger sizes.

▶ Proposition 7. There is an infinite family of simple intersecting digon-free arrangements
of n pseudocircles with ⌈ 5

3 n⌉ + 2 triangles which have no subarrangement isomorphic to N ∆
6 .

Proof. For any N ≥ 2, let AN be the arrangement of pseudocircles C1, · · · , CN such that
the cyclic order of intersection of Ci with the other pseudocircles is:

1, 2, . . . , i − 1, i + 1, . . . , N, N, N − 1, . . . , i + 1, i − 1, . . . , 1.

The arrangement can be represented with axis-parallel rectangles so that for all i < j the
right side of Ci cuts vertically through Cj ; see Figure 18a for A4. Note that every triple of
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three pseudocircles of AN induces a NonKrupp. The faces of AN are: 3 digons, 2(N − 2)
triangles, N(N − 3) + 2 four-gons, and a single (2N − 2)-gon.

On the basis of AN we construct an arrangement BN by bundle replacements.

1

2

3

4

(a) The arrangement A4 (b) The arrangement B4.

Figure 18 Replacing the pseudocircles with bundles so that the twists destroy all digons.

From AN we obtain the arrangement BN by successively replacing C1, · · · , CN by bun-
dles B1, · · · , BN of size 3 where we place the twists according to the following rules; Figure 18b
shows the arrangement B4 obtained by using the base arrangement A4 from Figure 18a.

The bundle replacing C1, has two twists outside of C2 and one twist inside of CN .
The bundle Bi replacing Ci, 1 < i < N , has two twists which increase the degree of each
of the two triangles formed by Bi−1, Ci and Ci+1. The third twist is within Bi−1 such
that it increases the degree of a triangle corresponding to a twist of Bi−1.
Finally, when replacing CN , place two consecutive twist which increase the degree of
the digon formed by BN−1 and CN and one twist in a triangle corresponding to a twist
of BN−1.

The arrangement BN consists of n = 3N pseudocircles. For counting the triangles, each
bundle Bi has 6 internal triangles, but for the bundles B1, · · · , BN−1 one of them is dissolved
by a twist of the next bundle Bi+1. Additionally, the digon formed by C1 and CN has been
made a triangle. The total number of triangles of BN is

6N − (N − 1) + 1 = 5N + 2 = 5
3n + 2.

The arrangement BN is digon-free. It remains to show that there is no subarrangement of BN

which is isomorphic to N ∆
6 .

Since every triple of pseudocircles of AN induces a NonKrupp, the same is true for triples
of pseudocircles taken from distinct bundles of BN . A N ∆

6 arrangement has exactly 4 triples
that form a NonKrupp and each of the six pseudocircles is member of exacly two of them.

Let B′ be a subarrangement of BN consisting of 6 pseudocircles. If B′ contains pseudocircles
of at least four different bundles then it has strictly more than 4 NonKrupps, hence, it cannot
be isomorphic to N ∆

6 . Now assume that B′ consists of k1, k2, k3 ≥ 0 pseudocircles from three
pairwise different bundles, k1 + k2 + k3 = 6.

▷ Claim 14. If ki > 0 for i = 1, 2, 3, then B′ is not isomorphic to N ∆
6 .

Proof of Claim 14. As each triple of pseudocircles of pairwise different bundles forms a
NonKrupp, B′ contains at least k1 ·k2 ·k3 NonKrupp subarrangements. Since k1 +k2 +k3 = 6,
this value is 4, 6, or 8. If k1 ·k2 ·k3 = 4, two of the ki are equal to 1 and the two corresponding
pseudocircles participate in all 4 NonKrupp subarrangements of B′. Hence, in all cases B′

and N ∆
6 are not isomorphic. △
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It follows that if B′ is isomorphic to N ∆
6 , then it must contain the three pseudocircles of

each of two bundles, i.e., k1 = k2 = 3.

▷ Claim 15. If B′ is a subarrangement consisting of two complete bundles of BN , then B′ is
not isomorphic to N ∆

6 .

Proof of Claim 15. From the bundle structure of B′ we get 6 triangles in each of the two
bundles. A twist of one bundle placed between consecutive pseudocircles of the other bundle
can destroy one triangle of the second bundle. Such a twist corresponds to one of the two
crossings in the underlying arrangement of two circles. Hence the arrangement B′ has at
least 10 triangles, while N ∆

6 has only 8. △
This excludes the existence of a subarrangement B′ isomorphic to N ∆

6 . ◀

We now sketch how the constant 5/3 of Proposition 7 could be replaced by the smaller
constant 3/2.

Again we take the arrangement AN as a basis but now we replace each pseudocircle with
a bundle of size 4. This can lead to an intersecting digon-free arrangement with n = 4N

pseudocircles and

(8N + 2(N − 2) + 6) − 4N = 6N + 2 = 3
2n + 2

triangles; the count is as follows: each of the 4N twists can increase the degree of a triangle
or digon by one, the initial arrangement AN has 3 digons and 2(N − 2) triangles. To
achieve N ∆

6 -freeness with bundles of size 4 the twists have to be placed with some care,
and the analysis that the result is indeed N ∆

6 -free requires the analysis of a lot of cases. In
fact N ∆

6 can be obtained from the arrangement with two circles by replacing one with a
bundle of size 2 and the other with a bundle of size 4 if the twists are placed in a specific way.

Every arrangement A with the property that every triple of pseudocircles forms a
NonKrupp can be used as the basis for a construction with bundle replacement with bundles
of size 3 and/or 4 such that the constructed arrangement is intersecting, digon-free, N ∆

6 -free
and has few triangles. Using bundles of larger size makes it more challenging to avoid N ∆

6 -
subarrangements, and we see no way of getting below 3

2 n triangles with such a construction.
For Conjecture 6 to be true, it would be necessary that N ∆

6 -free arrangements obtained
by bundle replacement with few triangles are non-circularizable. With the help of the
polymake [9] extension r9n developed by Julian Pfeifle, we could verify that the arrange-
ment B3 with 9 pseudocircles and 17 triangles and the arrangement C7 with 7 pseudocircles
shown in Figure 19 are both not circularizable. We leave the following questions for future
research:

Figure 19 Non-circularizable arrangement C7.
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What is the minimum number of triangles of intersecting, digon-free, N ∆
6 -free arrange-

ments of pseudocircles?
What is the minimum number of triangles of intersecting, digon-free arrangements of
circles? Is it 2n − 4? (Conjecture 6)
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