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Abstract
The intersection graph induced by a set C of n disks can be dense. It is thus natural to try and sparsify
it, while preserving connectivity. Unfortunately, sparse graphs can always be made disconnected by
removing a small number of vertices. In this work, we present a randomized sparsification algorithm
that maintains connectivity between two regions in the computed graph, if the original graph remains
“well-connected” even after removing an arbitrary “attack” set B ⊆ C from both graphs. Thus, the
new sparse graph has similar reliability to the original disk graph, and can withstand catastrophic
failure of nodes while still providing a connectivity guarantee for the remaining graph. The new
graph has near linear complexity, and can be constructed in near-linear time.

The algorithm extends to any collection of shapes in the plane with near linear union complexity.
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1 Introduction

Given a set C of n disks in the plane, their intersection graph is formed by connecting each
pair of intersecting disks by an edge. While this graph has an implicit representation of
linear size, its explicit graph representation might be of quadratic size. It is thus natural to
try and replace this graph by a sparser graph that retains some desired properties, such as
preserving distances (i.e., a spanner), or preserving connectivity.

Such questions become significantly more challenging if one wants to preserve such
properties under network failures. The main obstacle is that a sparse graph can always be
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Figure 1.1 The points p and q are connected by a safe curve, and remain connected under the
attack (i.e., the removal of the red disks). Similarly, r and q are not safely connected.
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10:2 Sparsifying Disk Intersection Graphs for Reliable Connectivity

made disconnected by deleting the neighbors of a low degree vertex. Thus, the minimum
degree of a graph has to be high, failing to provide the desired sparsity, especially if the
graph has to withstand large attacks. An alternative approach is to provide such a guarantee
only to most of the remaining graph (after the failure), allowing some parts of the graph to
be ignored. For geometric spanners there has been recent work on constructing such reliable
spanners [5, 4, 10].

Here, we consider the case of geometric intersection graphs and geometrically motivated
connectivity guarantees. Specifically, given a set of disks C and the corresponding intersection
graph G = GC , our goal is to compute a sparse subgraph H ⊆ G, such that its connectivity
is robust to vertex deletion. However, the original disk intersection graph G might have
small cut sets – that is, the removal of a small set of vertices that disconnects the graph.
Thus, it is unreasonable to expect the subgraph H to have connectivity resilient against such
removals as well.

This motivates analyzing the connectivity of H with respect to the connectivity of G

(instead of using an absolute metric). A more reasonable desired property of H is that, for
any attack set B ⊆ C, the graphs G − B and H − B (that is, the graphs remaining after the
vertices of B are deleted) have similar connectivity. However, if H is a sparse graph and the
attack set B is chosen to disconnect H, then G − B may remain connected while H − B is
disconnected. Thus, this property is still too stringent to provide a reasonable guarantee of
connectivity for H.

ε-safety

To circumvent these issues, we seek to provide a more geometric guarantee. A point p is
ε-safe with respect to an attack set B if at most an ε-fraction of the disks originally covering
p are not removed (i.e., not contained in B). A curve is ε-safe if all the points along it are
ε-safe, and two points are ε-safely connected if there is an ε-safe curve between them.

Our goal here is to construct a sparse subgraph H that guarantees connectivity, for any
attack set B, in the graph H −B, for any two points p, q that are ε-safely connected in G−B

(creating vertices for p and q for a precise definition given later). Importantly, the graph H

is constructed before B is known, and the required property should hold for any attack set
B. A graph H with this property is ε-safely connected. See Figure 1.1 and Figure 1.2 for
examples.
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Figure 1.2 A path connecting p to q might look safe, but an attack might leave fragile connectivity,
hanging by a disk, where any single disk failure might lead to disconnection. To avoid such scenarios,
where one has to keep all the edges in the original graph, ε-safety holds only for points that are still
relatively “deep” in the residual set after the attack set is deleted.
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A toy example

Consider a set of disks that all intersect in a common point. The underlying intersection
graph is a clique. We would like to compute a sparse subgraph of this clique that has similar
connectivity to the clique, at least in the regions that are still deep in the residual graph
after the attack set is removed.

Reliability guarantee

Here, we compare our geometric reliability guarantee to other approaches. The most
immediate question with our construction is whether the guarantee can be given for each
disk of the intersection graph instead of individual points connected to all ε-safe faces (i.e.
any two disks which contain ε-safely connected points remain connected in the graph H − B).
However, a single disk in the spanner H can be isolated by the removal of all of its neighbors,
thus providing a similar guarantee for each disk # ∈ C would require each vertex in H to
have degree ε degG(#), making the final spanner H not sparse (having Ω(εn2) edges). This
is similar to the obstacle noted in [10] with k-fault tolerant spanners, in that compensating
for large failures in the network requires a large minimum degree, and hence yields a spanner
with a large number of edges.

It is then natural to wonder whether we can provide a reliability guarantee similar to [10];
that is, if a set B of disks are deleted, can we retain connectivity between all but (1 + ε)|B|
disks for the original graph in our spanner? There are obstacles to providing a guarantee
such as this as well. For example, if the disks removed separate G into two large connected
components each of size greater than ε|B|, then we cannot exclude connectivity in H − B

for either connected component.

Motivating the guarantee

Although our guarantee is similar in spirit to those of other works, it has a natural motivation
arising from applications. Geometric intersection graphs (and disk graphs specifically) have
been frequently used as a model for ad hoc wireless networks [1]. In this model, the disks
represent areas of connectivity by devices, and potential users can be represented by points.
These types of networks are popular because they are lightweight and easy to deploy, but
suffer from high rates of node failure due to their decentralized nature and usage in adverse
conditions [9]. This motivates algorithms specific to this setting and which can perform well
under a large number of failures [12], including the guarantee given in this work.

For example, in this model, our constructed spanner H is simply a collection of edges
over the existing ground set, and these edges can be interpreted as a strategy for hardwiring
different network devices together to ensure reliability. Thus, our reliability guarantee on
H provides regions where users can retain continuous connectivity with the network, even
under a large number of device failures. The sparsity of our construction ensures the desired
connectivity using only a near-linear number of hardwired links between access points.

Efficiency

As mentioned in the introduction, a set C of n disks in the plane can implicitly represent a
graph with O(n2) edges. Thus, as we would like to construct a spanner of nearly-linear size,
it is natural to wonder if this can be done in nearly-linear time (i.e. in time constrained by
the complexity of the output). In particular, such an algorithm could provide information
about the implicitly defined graph in time linear in its representation, which is desirable in
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10:4 Sparsifying Disk Intersection Graphs for Reliable Connectivity

circumstances where quadratic complexity in the input is not considered efficient. In this
work, we answer this question in the affirmative.

Our result
Given a set C of n disks in the plane, and a parameter ε ∈ (0, 1), let G = GC denote the
intersection graph induced by C. We present a near linear time construction of a sparse
subgraph H of G that is ε-safely connected.

It is important to note that the constructed subgraph H is not an intersection graph
(i.e., is not described implicitly), even though it is over the same vertex set as G, which is an
intersection graph.

Idea

For a point p ∈ R2, let Gp denote the induced subgraph of G over the set of disks intersecting
p, and similarly for Hp with the subgraph H. For any point p in the plane, the graph Gp is a
clique. Our construction replaces this clique by the graph Hp, which is a “strong” expander.
This property by itself is sufficient to guarantee that H is safely connected. The challenge is
to construct H such that it has the desired expander property for all points in the plane,
while being sparse, and furthermore do this in near linear time (as even building the graph
G explicitly takes quadratic time).

Random coloring, sparsification, and expansion

It is well known that a random coloring of vertices can be used to sparsify a graph by
retaining only edges that connect vertices of certain colors. For example, if one randomly
colors a clique of k vertices by 2k colors, and retains only edges that connect vertices whose
colors differ by 1 (modulo 2k), then the resulting graph has Θ(k) edges in expectation. This
collection of edges is almost a matching. It is well known that the union of three random
matchings forms an expander graph with high probability [11]. Thus, if one repeats the
random coloring idea suggested above a sufficient number of times, the union of the collection
of edges results in an expander with high probability (for a precise definition of expanders
given later).

Stop in the shallow parts, before getting too deep

The main obstacle is that if we randomly color the disks C by k colors, some point p in the
arrangement A(C) might be covered by n/k disks of a single color. As a result, a single
random coloring could replace Gp by a graph that has Ω(n2/k) edges, and if k is o(n), this
is too many edges to generate a graph with Õ(n) edges.

To avoid this problem, we only add edges of the coloring if they correspond to shallow
regions (i.e., regions of depth ≈ k). The Clarkson–Shor technique [7] readily implies that
the number of edges added by this is roughly Õ(n), where Õ hides polynomial terms in 1/ε

and log n. Repeating this a sufficient number of times (i.e., polylogarithmic), provides the
desired property for faces that are of depth in the range k to 2k. We repeat this process for
exponential scales, covering all faces of the arrangement by good “depth” expanders.

Generalizing to other families of objects

The key property of disk graphs which we use to analyze our algorithm’s runtime and size of
the resulting spanner is the bound on the union complexity [7]. As a result, our techniques
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immediately generalize to intersection graphs of other families of objects with near linear
bounds on their union complexity – for example, the union complexity of n fat triangles is
O(n log∗ n) [2], and our construction would work verbatim for this case.

The contribution

Many of the above ideas are classical (random coloring, sparsification, etc). The whole
scheme in the context of connectivity in the plane seems to be new. Beyond the result
itself, we believe our combination of techniques from traditional computational geometry
and expanders is quite interesting, and should be useful for other problems.

2 Settings

2.1 Notations
For a positive integer k, let JkK = {1, . . . , k}. For sets C and X, we use the shorthand
C − X = C \ X. Similarly, for y ∈ C, we use the shorthand G − y = G \ {y}.

For a graph G = (C, E) and a set X ⊆ C, we denote by GX =
(
X, {uv ∈ E | u, v ∈ X}

)
the induced subgraph of G over X. For a set Y ⊆ C, let G − Y = GC−Y denote the induced
subgraph of G on C − Y .

Let V (G) and E(G) denote the vertex and edge sets of a graph G respectively. In
particular, if G is the intersection graph of a set of disks C, then V (G) = C. For a set of
vertices S ⊆ V (G), let N(S) = {x ∈ V | ∃y ∈ S, xy ∈ E(G)} be the neighborhood of S.

2.1.1 Intersection graph
For a set of regions C in the plane, let

G = GC = (C, {#1#2 | #1 ∩ #2 ̸= ∅, #1,#2 ∈ C})

denote the intersection graph of C. Throughout this paper, we assume that the regions
are in general position – say, any two regions that intersects do so in their interior, and no
three boundaries of regions pass through a common point.

For a point p in the plane, let

C ⊓ p = {# ∈ C | p ∈ #}

be the set of disks of C covering p. The induced subgraph for all of the disks C ⊓ p incident
to the point p is denoted by Gp = GC⊓p. Note that when G is an intersection graph of C,
then Gp is a clique, but this is not necessarily the case for a subgraph H of G, where Hp

could have missing edges.

2.2 Problem statement
Given a set of disks C in the plane, consider the induced intersection graph G = GC. We
consider some arbitrary (unknown) attack set B ⊂ C – the disks in this set are being deleted,
and we are interested in the connectivity of the remaining graph GC−B (that is, the induced
subgraph of G over C − B).

▶ Definition 1. For a point p ∈ R2, its depth is d(p) = d(p, C) = |C ⊓ p| – this is the number
of disks in C that cover p.

CGT



10:6 Sparsifying Disk Intersection Graphs for Reliable Connectivity

▶ Definition 2. A point p is ε-safe, with respect to an attack set B, if d(p, C − B) ≥ ε d(p, C).
In words, a point has at least an ε-fraction of the disks originally covering it, even after the
disks of the attack set B are removed.

▶ Definition 3. Given a set of disks C, the arrangement A(C) of C, is the partition of the
plane into faces, vertices, and edges induced by C, see [8]. A face/edge/vertex is ε-safe if any
point in it is ε-safe. The union of all safe points forms the ε-safe zone Z = Zε(C − B).

Two points p and q in the plane are ε-safely connected (with respect to some attack
set B), if p and q belong to the same connected component of Z.

The problem

The task at hand is to construct a sparse graph H ⊆ GC such that for any attack set B, and
any two ε-safe points p, q that lie in the same connected component of Z = Zε(C − B), there
are two disks #p,#q ∈ C − B, such that p ∈ #p, q ∈ #q, and #p and #q are connected in
H − B.

2.3 Expander construction via random coloring

2.3.1 Expander construction
Our goal here is to build a sparse “expander-like” graph over a set V of ν objects. Let
ε ∈ (0, 1) be a parameter and let ξ be a fixed number, such that ν ≤ ξ ≤ 2ν. For some
sufficiently large constant ce > 2, consider the following algorithm of generating a random
graph.

Repeat the following M = ce
⌈
ε−2⌉

times:
Randomly color the elements of V with ξ colors. For each such coloring, connect two
objects by an edge if their colors differ by 1 (modulo ξ).

The final graph G (over V ) is formed by including all the edges computed (in all the
iterations).

▶ Observation 4. The probability of two specific vertices to be connected for a particular
coloring is 2/ξ. Since there are

(
ν
2
)

pairs of vertices, we get that the expected number of edges
in each coloring is O(ν2/ξ) = O(ν). Thus G (in expectation) has O(ν/ε2) edges.

2.3.2 Proving expansion properties
▶ Lemma 5. Let S be a set of ν objects, and χ : S → JξK be a random coloring of S, for
ξ ≥ ν. Let X = |[|1]χ(S) = |[|1]{χ(v) | v ∈ S} be the number of different colors used in S.
Then, we have that P

[
X < ν/e2]

< exp(−ν).

Proof. Let T ⊆ JξK be a fixed set of t = βν colors for a constant β to be defined later. We
let γ = P[χ(S) ⊆ T ] = (t/ξ)ν . Applying a union bound, the probability that |χ(S)| ≤ t is at
most ∑

T ⊆JξK,|T |=t

P[χ(S) ⊆ T ] ≤
(

ξ

t

)
γ ≤ et

(
ξ

t

)t(
t

ξ

)ν

= et

(
t

ξ

)ν−t

≤ etβν−t

(
ν

ξ

)ν−t

.

Since t ≤ βν and letting β ≤ 1/e2, we have etβν−t ≤ exp(t − 2(ν − t)) ≤ exp(−ν). ◀
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For a coloring χi and an object s ∈ V , we denote the set of all elements in V that are
connected to s under this coloring by

Ni(s) =
{

t ∈ V
∣∣ |χi(t) − χi(s)| ≡ 1 mod ξ

}
.

▶ Definition 6. Let ε ∈ (0, 1) be a parameter. A graph G = (V, E) with ν vertices is an
ε-connector if, for every set of vertices S ⊆ V where |S| ≥ εν, the size of the neighborhood
satisfies |N(S)| > (1 − ε)ν. Namely, this is the property that

∀S ⊆ V |S| ≥ εν =⇒ |N(S)| > (1 − ε)ν.

▶ Lemma 7. Let cs, cr be the two sufficiently large constants used in the above construction,
and let G be the resulting graph. Then, for ν ≥ cs/ε2, and M ≥ cr/ε2, we have, with
probability ≥ 1 − exp(−4ν), that G is an ε/4-connector.

Proof. Fix the set S ⊆ V , and a “bad” set T ⊆ V (disjoint from S) of size (ε/4)ν. Here, the
bad event is that S is not connected to T in G. For some s ∈ S, the probability that s is not
adjacent to any vertex in T , by any edge induced by a specific coloring χi, is bounded by

P[Ni(s) ∩ T = ∅] ≤ 1 − |χi(T )|
ξ

.

Conceptually, we first color the elements of T , and then color the elements of S. The case
|S| > (1 − ε/4)ν is not possible as S and T are disjoint. Using the independence of the
neighborhood of each vertex s ∈ S, for each coloring i, we can bound P[Ni(S) ∩ T = ∅] by

∏
s∈S

P[Ni(s) ∩ T = ∅] ≤
(

1 − |χi(T )|
ξ

)|S|

≤ exp
(

−εν

4ξ
|χi(T )|

)
≤ exp

(
−ε

8 |χi(T )|
)

.

A coloring χi is good if |χi(T )| ≥ |T |/e2 ≥ τ = εν/40. By Lemma 5, we have that

P
[
χi is bad

]
≤ P

[
|χi(T )| < τ

]
≤ exp(−|T |) = exp

(
−ε

4ν
)

.

Combining the preceding bounds, we obtain

βi = P[Ni(S) ∩ T = ∅] ≤ P[Ni(S) ∩ T = ∅ | χi is good] + P
[
χi is bad

]
≤ exp

(
−ε

8 · εν

40

)
+ exp

(
−ε

4ν
)

≤ 2 exp
(

− ε2

320ν
)

≤ exp
(

− ε2

640ν
)

.

for ν > 640/ε2. As the colorings χ1, . . . , χM are chosen independently, we have that

β = P[N(S) ∩ T = ∅] =
∏M

i=1βi ≤ exp
(
−Mε2ν/640

)
.

There are
(

ν
≥εν/4

)(
ν

εν/4
)

≤ 4ν choices for the sets S and T . Thus, using the union bound over
all of the choices for these sets, we have that

P[∃S, T : N(S) ∩ T = ∅] ≤
∑
S,T

P[N(S) ∩ T = ∅] ≤ 4nβ ≤ exp
(

2ν − Mε2ν

640

)
≤ exp(−4ν),

if M ≥ 2600/ε2. ◀
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3 The construction of the safely connected subgraph

3.1 Preliminaries
For a set C of disks, and a parameter k, let G≤k(C) be the subgraph of the intersection
graph, where two disks #1,#2 ∈ C are connected by an edge, if there exists a point p, such
that p ∈ #1 ∩ #2, and the depth of p in C at most k. Such an edge is k-shallow in C.
Similarly, let A≤k(C) be the arrangement formed by keeping only vertices, edges and faces of
the arrangement A(C) that are of depth at most k (i.e., each connected region of all points
of greater depth form a “hole” face in this arrangement).

3.1.1 Computing the shallow parts of the intersection graph
The following is well known [7, 3] – for the sake of completeness, we provide a proof.

▶ Lemma 8. Let C be a set of n disks, and let k be a parameter. Then, the combinatorial
complexity of A≤k(C) is O(nk), and this also bounds |[|1]E(G≤k(C)). Both the arrangement
A≤k(C) and the graph G≤k(C) can be computed in O(n log n + nk) expected time.

Proof. The first part is a well known consequence of the Clarkson–Shor technique [7], as
the union complexity of n disks is linear. The construction algorithm for the arrangement is
described by Boissonnat and Yvinec [3].

The second part (which is also known) follows by a standard application of the Clarkson–
Shor technique. Indeed, every face of depth at most two of A(C), can contribute one edge to
G≤2(C). As such, the number of such edges is O(n) as the complexity of A≤2(C) is O(n).

Let E = E(G≤2(C)). Consider an edge e = #1#2 ∈ E, with a point p ∈ e being the
witness point of depth at most k such that p ∈ #1 ∩ #2. Let R be a random sample of disks
from C, where each disk is sampled with probability α = 1/k. The probability of the edge e

to appear in G≤2(R) is at least

P[e ∈ E(G≤2(R))] ≥ (1/k)2(1 − 1/k)k−2 ≥ 1/(10k2),

Indeed, this is the probability of adding #1,#2 to the sample, and no other disks of the at
most k − 2 disks that cover p.

The complexity of A≤2(R) is bounded by O(|R|), and as E[|R|] = O(n/k), it follows that∑
e∈E

P[e ∈ E(G≤2(R))] ≤ O
(
E

[
|A≤2(R)|

])
= O

(
E

[
|R|

])
= O(n/k).

However, we may also lower bound this this probability by∑
e∈E

P[e ∈ E(G≤2(R))] ≥ |E|
10k2 .

Combining these expressions, we have that |E|/k2 = O(n/k), which implies |E| = O(nk).
Having the arrangement A≤k(C) is not by itself sufficient to efficiently compute the graph

G≤k(C). Instead, one can lift the disks to planes, and use n/k-shallow cuttings [6] (see
references for relevant definitions). This results in a decomposition of the plane into O(n/k)
cells, such that each cell has a conflict-list of size O(k). We compute the arrangement of
the disks in the conflict list, and by tracing the boundary of each disk, it is straightforward
to discover all the edges of G≤k(C) that arise out of points in this cell. This takes O(k2)
time per cell, and O(nk + n log n) time overall, since computing the shallow cuttings takes
O(n log n) time. This also provides an alternative algorithm for computing A≤k(C). ◀
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3.1.2 The bipartite case
Analogous to the previous section, for two sets of disks C1, C2 and a parameter k, we let
G≤k(C1, C2) be the intersection graph defined as before, but where edges are only present
between disks #1,#2 such that #1 ∈ C1 and #2 ∈ C2. Using Lemma 8 and this definition,
the following corollary is immediate.

▶ Corollary 9. Let F1 and F2 be two disjoint sets of disks of total size n. We have that the
number of edges of G≤k(F1, F2) is bounded by O(nk). Additionally, the edges of this graph
can be computed, in O(nk) time, for k = Ω(log n).

3.2 The construction algorithm
The input is a set of n disks C, and a parameter ε ∈ (0, 1), where cs, cr are the constants
from Lemma 7, and cα is a constant to be specified later. Initially, the algorithm starts with
the empty graph over C. Let

α =
⌈
cαcs

(
ε−2 + 4 ln n

)⌉
. (3.1)

Next, using Lemma 8, the algorithm computes all the faces of depth ≤ α in A(C), and adds
all the edges induced by α-shallow intersections of the Lemma 8 to the graph.

This takes care of all the shallow faces of the arrangement. For deeper faces, in the ith
round, for i = 1, . . . , N = 1 + ⌈log2(n/α)⌉, the algorithm sets αi = 2i−1α. The algorithm
handles the faces with depth in the range (αi−1, αi], as follows:

ith round: For j = 1, . . . , M =
⌈
cr/ε2⌉

, the algorithm colors each disk of C uniformly at
random with αi colors. Let χi,j : C → JαiK be this coloring.

Converting a coloring into a graph: Let Ft = χ−1
i,j (t) be the set of disks of C colored

by color t, for t ∈ JαiK. Using Corollary 9 as a subroutine, the algorithm computes the
edges of Et = E(G≤α(Ft−1, Ft)) and adds them to the resulting graph, for t = 1, . . . , αi

(where F0 = Fαi
). The graph induced by this coloring is Gi,j = (C, ∪tEt).

The algorithm returns the union of all these graphs as the desired constructed graph. In
summary, the algorithm computes M random colorings in each round, and adds shallow
edges between disks whose colors differ by 1 (modulo 2k), for each such coloring to the graph.
The final graph is denoted by S = S(C).

3.3 Analysis
3.3.1 Construction time and size
▶ Lemma 10. The construction algorithm runs in time O(nε−4 log2 n). This also bounds
the number of edges in the computed graph.

Proof. At the start, the algorithm includes all edges from faces with depth ≤ α. By Lemma 8,
this can be done in O(nα) = O(n/ε2 + n log n) time.

For inner iteration j, the disk coloring step can be performed in O(n) time by simply
randomly assigning each disk a color from JαiK. Let nt = |Ft|, where Ft ⊆ C is the set of disks
assigned color t. The algorithm computes edges induced by α-shallow faces in A(Ft−1 ∪ Ft)
for t = 1, . . . , αi. By Corollary 9, these edges can be computed in O(α(nt + nt+1)) time.
Summing over t (for a fixed j), we have that edges of this iteration can be computed in

αi∑
t=1

O(α(nt + nt+1)) = O(αn) = O(n/ε2 + n log n),

CGT



10:10 Sparsifying Disk Intersection Graphs for Reliable Connectivity

time, as
∑αi

t=1 nt = n. This is being performed O(1/ε2) times in each round, and there are
O(log n) rounds. Thus, the total work of this algorithm is O((nε−2 + n log n)ε−2 log n) =
O(nε−4 log2 n). ◀

3.3.2 Rejecting edges from deep faces
One issue that may arise during the execution of the construction algorithm is the disregard
for deep faces, i.e., faces that are covered by more than α disks. This can occur if there is
some face in the arrangement A(C) with depth in the range (αi−1, αi] that, in the ith round,
has more than α disks intersecting it from a given color pair (t − 1, t). So even under the
random coloring, the face still has depth which is too large under some color pair, and some
of its induced edges are ignored. Thus, we must upper bound the probability of any failure
of this type for any color pair (t − 1, t) and any coloring χi,j sampled in the ith round.

▶ Lemma 11. Consider some face f ∈ A(C) such that d(f) ∈ (αi−1, αi]. In the jth coloring
of the ith round of the algorithm (see Section 3.2), for any fixed color t ∈ JαiK, the probability
that f is a hole (i.e., has depth bigger than α) in A≤α(Ft−1, Ft) is bounded by 1/n9.

Proof. The face f is only a hole in A≤α(Ft−1, Ft) during the ith round if d(f, Ft−1 ∪ Ft) > α.
Since each disk is colored uniformly at random with αi colors, the probability that some disk
incident to f has color t − 1 or t is 2/αi. Since there are d(f) ≤ αi disks incident to f , we
can bound the probability of this event (taken over the choice of coloring χi,j) by

P[d(f, Ft−1 ∪ Ft) > α] ≤
(

d(f)
α

)(
2
αi

)α

≤
(αie

α

)α
(

2
αi

)α

=
(

2e

α

)α

≤ exp(−α) ≤ 1
n9 ,

as
(

n
k

)k ≤
(

n
k

)
≤

(
en
k

)k
, and by making cα sufficiently large. ◀

Now, we apply this lemma with a union bound to show that, with high probability, we
never ignore any edges needed for our construction due to assigning a face a single color too
many times.

▶ Corollary 12. With probability ≥ 1 − 1/n7, no faces are ever ignored during the iteration
they are handled in the construction algorithm from Section 3.2.

Proof. To not have any face ignored, every face must have depth at most α under any
consecutive color pair (t − 1, t), under all M colorings, in the iteration i it is handled. There
are αi ≤ n possibilities for the color t, and by Lemma 8, there are at most O(n2) distinct
faces in A(C). Thus, applying Lemma 11 (with the constant cα set large enough) and using
the union bound, the probability any face is ever ignored during the iteration in which it is
handled is at most∑

f∈A(C)

M∑
j=1

∑
t∈JαiK

P[d(f, Ft−1 ∪ Ft) > α] ≤ O(n2) · 1
n9 = 1

n7 ,

which implies the desired lower bound on the probability of no faces ever being ignored. ◀

3.3.3 The depth expander property
Recall that for a point p in the plane, the set C ⊓ p is the set of all disks of C that contains p.
For the intersection graph G = GC , the induced subgraph GC⊓p is a clique. We claim that,
for the “spanner” S output by the construction algorithm, the induced graph SC⊓p is an
expander. In the following lemma, we do not account for faces being ignored (i.e., we apply
Corollary 12 later).
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▶ Lemma 13. For a point p in the plane, let ν = d(p, C) = |C ⊓ p| be its depth in the set
of disks C. Then, for any point p, SC⊓p is an ε/4-connector with probability ≥ 1 − 1/n10

(assuming that no faces are ignored during the iteration they are handled).

Proof. If ν ≤ α, then SC⊓p is a clique, and the claim holds. Otherwise, fix i such that
ν ≤ αi < 2ν. Observe that for the disks of C ⊓ p, in the ith round of the algorithm, the
construction is identical to the connector construction of Section 2.3.1. As such, the resulting
graph (which might have more edges because of other iterations), has the properties of
Lemma 7, with probability ≥ 1 − exp(−4ν) ≥ 1 − 1/n16, since ν > α > 4 ln n. As the
arrangement has at most O(n2) faces, the claim follows by the union bound. ◀

3.3.4 Safe connectivity
▶ Lemma 14. For an attack set B ⊆ C, let Z = Zε(C − B) be the safe zone (see Definition 3).
Then, for all pairs of points p, q that are in the same connected component of Z, there is a
path in the graph S − B between two disks #p,#q ∈ C − B (where p ∈ #p and q ∈ #q) with
probability ≥ 1 − 1/n4.

Proof. Fix the points p and q. Let F be the connected component of Z that contains p and
q. The arrangement A(C) restricted to F is connected and has at most O(n2) faces, edges
and vertices. As such, there is a curve γ between p and q, inside F , that crosses at most
O(n2) faces and edges of C. We may assume without loss of generality that γ does not cross
an edge of A(C) more than once, as otherwise it can be shortcut.

Next, construct a sequence of points on γ as follows. Initially, let p1 = p. Then,
continuously move along γ towards q. Any time the traversal enters a new face of A(C), the
traversal places a new witness point on the newly entered face – specifically, somewhere in
the connected component of γ intersecting this face. The final point is pm = q. By the above
discussion, we have that m = O(n2). Let R(i) ⊆ (C − B) ⊓ pi be the set of all the disks of
C − B incident to pi and are reachable (in the graph-theoretic sense) from p in the graph
S − B. Here, the start set is R(1) = (C − B) ⊓ p.

For all i > 1, let Li = (C − B) ⊓ pi−1, ℓi = |Li|, and di = d(pi, C). We claim that, for any
i, |R(i)| ≥ (ε/2) d(pi, C).

The claim readily holds for i = 1, as |R(1)| ≥ ε d(p, C) because p is in the safe zone, and
thus an ε fraction of disks of C − B cover p and are thus reachable from p. So assume this
holds for all j < i, and consider R(i − 1) and R(i). Observe that they differ by at most two
disks by the general position assumption.

If di−1 < α and di < α, then SC⊓pi−1 and SC⊓pi
are cliques. By induction, |R(i − 1)| ≥

(ε/2)di, which implies that all the disks of Li are reachable from p. By the general position
assumption, R(i − 1) ∩ R(i) is not empty, which implies that there is at least one disk of
R(i) that is reachable from p in S − B. Since SC⊓pi−1 is a clique, it follows that all the disks
of Li are reachable from p, and since ℓi ≥ εdi, the claim follows.

If di−1 ≥ α and di ≥ α, then |R(i − 1)| ≥ (ε/2)di−1 ≥ (ε/2)α > 10/ε, see Eq. (3.1).
We have that at most two disks of R(i − 1) are not present in R(i), which implies that
|R(i)| ≥ |R(i − 1)| − 2 ≥ (ε/2)di−1 − 2 ≥ (ε/4)di, as |di − di−1| ≤ 2.

By Lemma 13, SC⊓pi−1 is an ε/4-connector over C ⊓ pi−1. Since at least (ε/4)di disks
from R(i − 1) are present in R(i), we apply the expansion property to this set of disks and
have that at least (1 − ε/4)di disks in R(i) are connected to the disks of R(i − 1) in SC⊓pi

.
Let Zi be the disks in C ⊓ pi that are not connected to R(i − 1). By the preceding

discussion, |Zi| ≤ (ε/4)di. As such, we have that

|R(i)| ≥ ℓi − |Zi| = εdi − (ε/4)di ≥ (3/4)εdi,

CGT
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which implies the claim.
The remaining cases, where di, di−1 ∈ [α − 2, α + 2] are handled in similar fashion, and we

omit the routine analysis. We thus conclude that the point pi, for all i, has at least (ε/2)di

disks that are reachable to it from p in the graph S − B.
The expansion property of Lemma 13 holds with probability ≥ 1 − 1/n10, and so we

obtain our final result by union bounding over all n4 possible pairs of adjacent faces. The
later claim readily implies the claim holds for all points p and q. ◀

3.4 The result
▶ Theorem 15. Let C be a set of n disks in the plane and ε ∈ (0, 1) a parameter. The
algorithm of Section 3.2 constructs a graph S(C), which is a sparse (precise bound below)
subgraph of the intersection graph GC, such that for any attack set B ⊆ C and any two
ε-safely connected points p, q in the plane, there is a path in the graph S − B between a disk
that contains p and a disk that contains q.

This property holds for any attack set, and any two points, with probability ≥ 1 − 1/n3.
The construction time and the number of edges of S is bounded by O(ε−4n log2 n).

Proof. Follows from the bounds on failure events in Lemma 14 and Corollary 12 and applying
a union bound. ◀

4 Conclusions

We presented a new technique for sparsifying the intersection graph of disks (or any shapes
with near linear union complexity) – the resulting graph has the property of preserving
connectivity in regions that are still covered by an ε-fraction of the original disks after
an attack. There are other guarantees that one might want. For example, the reliability
guarantee for spanners [5] – that is, that if an attack deletes b disks in the spanner, then
deleting (1 + ε)b disks in the original intersection graph would leave the original graph with
similar connected components to the spanner after the deletion. Similarly, the proof of
connectivity we presented did not try to minimize the number of edges traversed in the
graph, so it is natural to try to give a hop bound for the number of edges that must be taken
in the spanner after the attack set is removed, H − B (as compared to the length of the
same path in G − B).
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