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Abstract
An obstacle representation of a graph G consists of a set of polygonal obstacles and a drawing
of G as a visibility graph with respect to the obstacles: vertices are mapped to points and edges to
straight-line segments such that each edge avoids all obstacles whereas each non-edge intersects at
least one obstacle. Obstacle representations have been investigated quite intensely over the last few
years. Here we focus on outside-obstacle representations (OORs) that use only one obstacle in the
outer face of the drawing. It is known that every outerplanar graph admits such a representation.

We strengthen this result by showing that every (partial) 2-tree has an OOR. We also consider
restricted versions of OORs where the vertices of the graph form a convex or even a regular polygon.
We characterize when the complement of a tree and when a complete graph minus a simple cycle
admits a convex OOR. We construct regular OORs for all (partial) outerpaths, cactus graphs, and
grids.
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1 Introduction

Recognizing graphs that have a certain type of geometric representation is a well-established
field of research dealing with, e.g., geometric intersection graphs, visibility graphs, and
graphs admitting certain contact representations. Given a set C of obstacles (here, connected
polygonal regions, which we consider to be open) and a set P of points in the plane, the
visibility graph GC(P ) has a vertex for each point in P and an edge pq for any two points p

and q in P that can see each other, that is, the line segment pq connecting p and q does
not intersect any obstacle in C and does not contain any other point of P . An obstacle
representation of a graph G consists of a set C of obstacles in the plane and a mapping of the
vertices of G to a set P of points such that G = GC(P ). Note that, in such a representation,
for each non-edge pq of G, that is, for each non-adjacent vertex pair, the line segment pq
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2:2 Outside-Obstacle Representations with All Vertices on the Outer Face

(a) A graph that admits an inside-obstacle
representation but no outside-obstacle
representation [5].

(b) The complete bipartite graph K2,3 is the smallest graph
that contains a cycle and admits an outside-obstacle represen-
tation but no inside-obstacle representation [5].

Figure 1 Inside- and outside-obstacle representations of graphs. The gray regions represent the
obstacles; the dashed line segments represent the non-edges.

must intersect an obstacle in C. The vertex–point mapping defines a straight-line drawing Γ
of GC(P ). We planarize Γ by replacing all intersection points by dummy vertices. The faces
of this planarization are open polygonal regions. We call the unbounded face the outer face
of Γ. We differentiate between two types of obstacles: outside obstacles lie in the outer face
of the drawing, and inside obstacles lie in the complement of the outer face; see Figure 1.

Every graph trivially admits an obstacle representation: take an arbitrary straight-line
drawing without collinear vertices and “fill” each face with an obstacle. This, however, can
lead to a large number of obstacles, which motivates the optimization problem of finding
an obstacle representation with the minimum number of obstacles. For a graph G, the
obstacle number obs(G) is the smallest number of obstacles that suffice to represent G as a
visibility graph.

While most previous work (discussed below) has focused on establishing bounds for the
obstacle number of general graphs, we are interested in understanding which graphs can be
represented by a single obstacle. In particular, we focus on outside obstacle representations
(OORs), that is, obstacle representations with a single outside obstacle and without any
inside obstacles. For such a representation, it suffices to specify the positions of the vertices
of the given graph; the outside obstacle is simply the whole outer face of the representation.
In an OOR, every non-edge of the graph must thus intersect the outer face. We consider
three special types of OORs: In a convex OOR, the vertices must be in convex position; in
a circular OOR, the vertices must lie on a circle; and in a regular OOR, the vertices must
form a regular n-gon, where n is the number of vertices of the graph. For examples, refer to
Figure 2.

In general, the class of graphs that admit an OOR is not closed under taking subgraphs,
but the situation is different for graphs admitting a reducible OOR, meaning that all of its
edges are incident to the outer face. In this case, we can simply extend the outside obstacle
to intersect any edge we want to remove.

▶ Observation 1. If a graph G admits a reducible OOR, then every subgraph of G also
admits such a representation.

Previous work. Alpert, Koch, and Laison [1] introduced the notion of the obstacle number
of a graph. They also introduced the notion of an inside obstacle representations (IOR), that
is, an obstacle representation without an outside obstacle. They characterized the class of
graphs that have an IOR with a single convex obstacle and showed that every outerplanar
graph has an OOR. Chaplick, Lipp, Park, and Wolff [5] proved that the class of graphs with



Firman, Kindermann, Klawitter, Klemz, Klesen, and Wolff 2:3

(a) The wheel graph W6 does not ad-
mit a convex OOR (Proposition 11).
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(b) Graph that admits a circular but not a
regular OOR (move vertex 7 towards x).

(c) C6 admits a
regular OOR.

Figure 2 Non-convex, circular, and regular outside-obstacle representations (OORs). Graph
edges are solid black, non-edges are dashed red (in (b) only one non-edge is highlighted).

an IOR is incomparable with the class of graphs with an OOR by observing that no path
admits an IOR and the graph in Figure 1a, which admits an IOR, does not admit an OOR.
They showed that any graph with at most seven vertices has an OOR, which does not hold
for a specific 8-vertex graph. They also showed that the following sandwich version of the
outside-obstacle representation problem is NP-hard: Given two graphs G and H with the
same vertex set V such that G is a subgraph of H, is there a graph K with vertex set V that
is a supergraph of G and a subgraph of H and admits an outside-obstacle representation?
Analogous hardness results hold with respect to inside and general obstacles.

Alpert, Koch, and Laison [1] further showed that obs(K∗
a,b) ≤ 2 for any a ≤ b, where

K∗
a,b is the complete bipartite graph Ka,b minus a matching of size a. They also proved that

obs(K∗
5,7) = 2. Pach and Sarıöz [12] showed that obs(K∗

5,5) = 2. Berman, Chappell, Faudree,
Gimbel, Hartman, and Williams [4] suggested some necessary conditions for a graph to have
obstacle number 1. They gave a SAT formula that they used to find a planar 10-vertex
graph X4 (of treewidth 4) that has no 1-obstacle representation; see Figure 3.
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(a) the graph X4
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(b) a 2-obstacle representation of X4 [4]

Figure 3 The so-called gyroelongated square bipyramid X4, which has treewidth 4, does not
admit a representation with a single obstacle.

CGT



2:4 Outside-Obstacle Representations with All Vertices on the Outer Face

Obviously, any n-vertex graph has obstacle number O(n2). Balko, Cibulka, and Valtr [3]
improved this to O(n log n). On the other hand, Balko, Chaplick, Gupta, Hoffmann, Valtr,
and Wolff [2] showed that there are n-vertex graphs whose obstacle number is Ω(n/ log log n),
improving previous lower bounds, e.g., [1, 6, 10, 11]. They also showed that, when restricting
obstacles to convex polygons, sometimes a linear number of obstacles is needed. Furthermore,
they showed that computing the obstacle number of a graph G is fixed-parameter tractable
in the vertex cover number of G and that it is NP-hard to decide whether a given graph
admits an obstacle representation using a given simple polygon as (outside-) obstacle.

Contribution. We do a detailed analysis of the class of graphs that admit OORs: we
construct graphs that do not admit convex OORs and we find subclasses that admit convex,
circular, or regular OORs. We first strengthen the result of Alpert, Koch, and Laison [1]
regarding OORs of outerplanar graphs by showing that every (partial) 2-tree admits a
reducible OOR with all vertices on the outer face; see Section 2. Note that, to obtain an
OOR of an outerplanar graph G, we can delete edges from a reducible OOR of a 2-tree that
contains G as subgraph. Equivalently, every graph of treewidth at most two, which includes
outerplanar and series-parallel graphs, admits such a representation. Note that this result
and the above-mentioned 10-vertex planar graph X4 of treewidth 4 (see Figure 3) that does
not admit any 1-obstacle representation [4] leave open the question whether every (planar)
graph of treewidth 3 admits an OOR; see our list of open problems in Section 6.

Then we establish two combinatorial conditions for the existence of convex OORs; see
Section 3. In particular, we introduce a necessary condition that can be used to show that a
given graph does not admit a convex OOR as, e.g., the graph W6 in Figure 2a. We apply
these conditions to characterize when the complement of a tree and when a complete graph
minus a simple cycle admits a convex OOR. We further construct regular reducible OORs for
all outerpaths, grids, and cacti; see Section 4. The result for grids strengthens an observation
by Dujmović and Morin [6, Fig. 1], who showed that grids have (outside) obstacle number 1.

Notation. For a graph G, let V (G) be the vertex set of G, and let E(G) be the edge set
of G. We use n = |V (G)| where the graph is clear from the context. Given a cyclic order
σ = ⟨v1, v2, . . . , vn⟩ of V (G) and indices i and j with 1 ≤ i ̸= j ≤ n, we write [vi, vj) to
refer to the subsequence ⟨vi, vi+1, . . . , vj−1⟩ of σ, where indices are interpreted modulo n.
Subsequences (vi, vj) and [vi, vj ] are defined analogously.

2 Outside-obstacle representations for partial 2-trees

The graph class of 2-trees is recursively defined as follows: K3 is a 2-tree. Further, any graph
is a 2-tree if it is obtained from a 2-tree G by introducing a new vertex x and making x

adjacent to both endpoints of some edge uv in G. We say that x is stacked on uv and call
the edges xu and xv the parent edges of x.

▶ Theorem 2. Every 2-tree admits a reducible OOR with all vertices on the outer face.

Proof. It follows readily from the definition of 2-trees that every 2-tree T can be constructed
through the following iterative procedure, during which every vertex is marked either as
active or inactive. Once a vertex is inactive, it remains inactive for the remainder of the
construction.
(S1) Start with some edge, called the base edge and mark its vertices as inactive. Stack

any number of vertices (but at least one vertex) onto the base edge and mark the new
vertices as active.
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(S2) Pick an active vertex v and stack any number of new vertices (possibly none) onto each
of its two parent edges. The new vertices are marked as active and v is marked as
inactive.

(S3) While there are active vertices, repeat step (S2).
Observe that step (S2) is performed exactly once for each vertex that is not incident to
the base edge. We construct a drawing of T by geometrically implementing the iterative
procedure described above, so that after every step of the algorithm the present part of the
graph is realized as a straight-line drawing satisfying the following set of invariants:
(I1) Each vertex v that is not incident to the base edge is associated with an open circular

arc Cv centered at v that lies completely in the outer face; see Figure 4b. Moreover, the
parent edges of v lie below v and contain the endpoints of Cv.

(I2) Each non-edge intersects the circular arc of at least one of its incident vertices.
(I3) For each active vertex v, the region Rv enclosed by Cv and the two parent edges of v

(shaded gray in Figure 4b) is empty, meaning that Rv does not contain any vertex of T

and does not intersect any edge or circular arc. (Combined with (I1), it follows that Rv

lies completely in the outer face.)
(I4) Every vertex is incident to the outer face.

Once the procedure terminates, we have indeed obtained the desired drawing: invari-
ants (I1) and (I2) imply that each non-edge passes through the outer face and, hence, we
have indeed obtained an OOR. Moreover, invariant (I1) implies that each non-base edge
is incident to the outer face of the drawing. The base edge will be drawn horizontally. By
the second part of invariant (I1), all vertices not incident to the base edge are above the
base edge. Consequently, the base edge is incident to the outer face as well and, hence, the
representation is reducible. Finally, by invariant (I4), every vertex belongs to the outer face.

Construction. To carry out step (S1), we draw the base edge horizontally and place the
stacked vertices on a common horizontal line above the base edge; see Figure 4a. Circular
arcs that satisfy the invariants are now easy to define.

Let Γ be a drawing of the graph obtained after step (S1) and some number of iterations of
step (S2) such that Γ is equipped with a set of circular arcs satisfying the invariants (I1)–(I4).
We describe how to carry out another iteration of step (S2) while maintaining the invariants.

Let v be an active vertex. By invariant (I1), both parent edges of v are below v. Let eℓ = vℓ

and er = vr be the left and the right parent edges of v, respectively. Let ℓ1, ℓ2, . . . , ℓi and
r1, r2, . . . , rj be the vertices stacked onto eℓ and er, respectively. We refer to ℓ1, ℓ2, . . . , ℓi

and r1, r2, . . . , rj as the new vertices; the vertices of Γ are called old. See Figure 4b for
the following construction details. We place all the new vertices on a common horizontal
line h that intersects Rv above v. The vertices ℓ1, ℓ2, . . . , ℓi are placed inside Rv, to the
right of the line eℓ extending eℓ. Symmetrically, r1, r2, . . . , rj are placed inside Rv, to the
left of the line er extending er. For k ∈ {1, 2, . . . , i}, let W (ℓk) be the smallest open wedge
with apex ℓk that contains eℓ. For example, in Figure 4b, the green shaded wedge is W (ℓ2).
Note that W (ℓk) is bounded by the two rays that go from ℓk through v and through ℓ. For
k ∈ {1, 2, . . . , j}, let W (rk) be defined symmetrically.

We place ℓ1, ℓ2, . . . , ℓi close enough to eℓ and r1, r2, . . . , rj close enough to er such that
the following properties are satisfied:
(A) None of the parent edges of the new vertices intersects Cv.
(B) For each new vertex y, the wedge W (y) does not contain any vertices of T .
These properties are easy to achieve: let eℓ(α) be the line that is obtained by rotating eℓ

clockwise around v by angle α. Clearly, there is an angle α∗ such that

CGT



2:6 Outside-Obstacle Representations with All Vertices on the Outer Face

(a) Step (1); the base edge is red.

Rv

Cv

h

eℓ

eℓ(α
∗)

er

x(α∗)
ℓ2

v

r1 r2 ℓ1r3

er

ℓ

r

eℓ

W (ℓ2)

(b) Step (2); the hatched areas do not contain any vertices.

Figure 4 Construction steps in the proof of Theorem 2.

(A’) the intersection point x(α∗) of eℓ(α∗) and h lies in Rv, the line segment x(α∗)ℓ does
not intersect Cv, and

(B’) the unbounded wedge with apex v (hatched in red in Figure 4b) that goes from eℓ

to eℓ(α∗) in clockwise direction contains no vertices.
We place the vertices ℓ1, ℓ2, . . . , ℓi between eℓ and x(α∗). Then property (A’) guarantees
property (A). Similarly, property (B’) and invariants (I3) and (I4) for Γ imply property (B).
The vertices r1, r2, . . . , rj are placed symmetrically by rotating er around v counterclockwise.

Correctness. We now show that the invariants are maintained during the construction. By
invariant (I3), for each old vertex v, the region Rv is completely contained in the outer face
of Γ. Hence, it is easy to define circular arcs for the new vertices that satisfy invariant (I1).
To show that invariant (I1) also holds for the circular arcs of the old vertices, we argue as
follows. By property (A) of the construction, the parent edge e of a new vertex v can be
decomposed as follows: a line segment e1 that lies in Rv and a line segment e2 that lies
in the triangle △ℓrv formed by the endpoints of the parent edges of v (hatched in gray in
Figure 4b).

By invariant (I3) for Γ, the region Rv is empty and, hence, e1 does not intersect the
circular arc of any old vertex. By invariant (I1) for Γ, the circular arcs of the old vertices lie
in the outer face of Γ and, hence, it follows that e2 also does not intersect the circular arc of
any old vertex. Consequently, invariant (I1) is maintained for the circular arcs of old vertices.

Invariant (I2) is retained for the non-edges that join two old vertices since the circular
arcs of these vertices have not been changed. Property (B) and the fact that all new vertices
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are placed on h imply that each of the non-edges incident to a new vertex w intersect Cw.
Hence, invariant (I2) is also satisfied for the new non-edges.

Invariant (I3) holds for the circular arcs of the new vertices by invariant (I3) for v in Γ
and by (I1) for the new vertices. To see that invariant (I3) holds for the circular arcs of the
old vertices, let u ̸= v be an old vertex. Let e be a parent edge of a new vertex and recall
the definitions of e1 and e2 from above. The part e1 lies in Rv and e2 does not pass through
the outer face of Γ. Hence, it follows that invariant (I3) is retained for u.

By invariant (I3) for Γ, the region Rv is contained in the outer face of Γ. Hence, by
construction, invariant (I4) holds for v and the new vertices. Moreover, invariant (I4) is also
retained for the remaining vertices since, by construction, the edges incident to new vertices
intersect the outer face of Γ in Rv only. ◀

3 Convex outside obstacle representations

In this section we introduce a sufficient condition and a necessary condition for a graph to
admit a convex OOR and then use these conditions to characterize the complements of trees
and cycles that admit convex OORs.

We start with the sufficient condition. Suppose that a graph G admits a convex OOR Γ.
Let σ be the clockwise cyclic order of the vertices of G along the convex hull of Γ. If
all neighbors of a vertex v of G are consecutive in σ, we say that v has the consecutive-
neighbors property, which implies that all non-edges incident to v are consecutive around v

and trivially intersect the outer face in the immediate vicinity of v; see Figure 5a. Note that
this combinatorial condition is independent of the exact location of the vertices as long as
they are in convex position and their clockwise order is fix. This yields the following result.

▶ Lemma 3 (Consecutive-neighbors property). Let G be a graph, and let σ be a cyclic order
of V (G). If there is a subset V ′ of V (G) such that

every non-edge of G is incident to a vertex in V ′ and
every vertex in V ′ has the consecutive-neighbors property with respect to σ,

then G admits a convex OOR with cyclic vertex order σ on any set of points in convex
position.

v

(a) Vertex v has the consecutive-neighbors property.

v v′

x y

g

ē

[v′, y][x, v]

(b) Gap g is a candidate gap for the non-edge ē.

Figure 5 Examples for (a) the consecutive-neighbors property and (b) a candidate gap.

If a graph G fulfills the condition stated in the above lemma, then we say that G has
the consecutive-neighbors property. Note that the consecutive-neighbors property is not a
necessary condition for a graph to admit a convex OOR. For example, we will show that
every grid graph admits a convex (even a regular) OOR (Theorem 8), but the OORs that
we construct do not fulfill the consecutive-neighbors property (see, for example, vertex s in
Figure 14).

Next, we derive the necessary condition. For any two consecutive vertices v and v′ in σ

that are not adjacent in G, we say that the line segment g = vv′ is a gap. Then the gap
region of g is the inner face of Γ + vv′ incident to g; see the gray region in Figure 5b. We

CGT
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(a) the Petersen graph

1
2

34

5

5′

4′3′

2′

1′

(b) a non-convex OOR of the Petersen graph [8]

Figure 6 The Petersen graph does not admit a convex OOR.

consider the gap region to be open, but add to it the relative interior of the line segment vv′,
so that the non-edge vv′ intersects its own gap region. Observe that each non-edge ē = xy

that intersects the outer face has to intersect some gap region in an OOR. Suppose that g lies
between x and y with respect to σ, that is, [v, v′] ⊆ [x, y]. We say that g is a candidate gap
for ē if there is no edge that connects a vertex in [x, v] and a vertex in [v′, y]. (In Figure 5b,
the two intervals are highlighted in orange.) Note that ē can intersect only gap regions of
candidate gaps.

▶ Lemma 4 (Gap condition). A graph G admits a convex OOR with cyclic vertex order σ

only if, for every non-edge of G, there exists a candidate gap with respect to σ.

It remains an open problem whether the gap condition is also sufficient. Nonetheless, we
can use the gap condition for no-certificates. To this end, we derived a SAT formula from
the following expression, which checks the gap condition for every non-edge of a graph G:

∧
xy /∈E(G)

 ∨
v∈[x,y)

 ∧
u∈[x,v],w∈(v,y]

uw /∈ E(G)

 ∨
∨

v∈[y,x)

 ∧
u∈[y,v],w∈(v,x]

uw /∈ E(G)


We have used this formula to test whether all connected cubic graphs with up to 16 vertices
admit convex OORs. The only counterexample that we found was the Petersen graph; see
Figure 6. The so-called Blanuša snarks, the Pappus graph, the dodecahedron, and the
generalized Peterson graph G(11, 2) satisfy the gap condition. The latter three graphs do
admit convex OORs [8].

The smallest graph (and the only 6-vertex graph) that does not satisfy the gap condition
is the wheel graph W6 (see Proposition 11 in Section 5). Hence, W6 does not admit a convex
OOR, but it does admit a (non-convex) OOR; see Figure 2a.

Next, we turn to dense graphs.

Complement of a tree. For a graph G, the graph Ḡ with V (Ḡ) = V (G) and Ē(G) =
{uv : uv ̸∈ E(G)} is the complement of G. A caterpillar is a tree that contains a path such
that all vertices are at distance at most 1 from the path.

▶ Theorem 5. For any tree T , the graph T̄ has a convex OOR if and only if T is a caterpillar.

Proof. We prove the statement in two steps. First, we show that, for every caterpillar C,
the graph C̄ has a convex OOR, in fact, a regular OOR. Then we show that, for every tree T

that is not a caterpillar, T̄ does not admit any convex OOR.
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p1 p2 p3 p4 p5

ℓ21 ℓ22 ℓ41 ℓ42 ℓ43

(a)

p1
p2

p3
p4

ℓ21

ℓ22

ℓ41

ℓ42

ℓ43

p5

(b)

Figure 7 A caterpillar and a regular OOR of its complement.

Let C be a caterpillar, and let Π = ⟨p1, p2, . . . , pr⟩ be a path in C such that every vertex
in C has distance at most 1 from this path and such that p1 and pr are vertices of degree 1
in C; see Figure 7a for an example. For i ∈ {2, . . . , r − 1}, let ℓi

1, ℓi
2, . . . , ℓi

ni
be the leaves

adjacent to path vertex pi (if any). We arrange the vertices of C̄ in cyclic order as follows.
First, we take the path vertices in the given order. Then, for each i ∈ {2, . . . , r −1}, we insert
the leaves adjacent to vertex pi between pi and pi+1 into the cyclic order; see Figure 7b.

The resulting cyclic order is σ = ⟨p1, p2, ℓ2
1, ℓ2

2, . . . , ℓ2
n2

, . . . , pr−1, ℓr−1
1 , ℓr−1

2 , . . . , ℓr−1
nr−1

, pr⟩.
Observe that every non-edge of C̄ is incident to a vertex in V (Π) and that, for every
i ∈ {2, . . . , r}, vertex pi in V (Π) has the consecutive-neighbors property with respect to σ if
we view its “incoming” non-edge from pi−1 as an edge. We may do this since this non-edge is
still viewed as a non-edge from its other endpoint. Note that p1 trivially has the consecutive-
neighbors property. Hence, by Lemma 3, C̄ admits a convex OOR with cyclic vertex order σ

on any set of points in convex position, that is, C̄ admits even a regular OOR.
Now we prove the second part of the statement. Let Y be the tree that consists of a

root c with three children ℓ, m, and r, each of which has one child, namely ℓ′, m′, and r′,
respectively; see Figure 8a. Let T be a tree that is not a caterpillar. Note that T has a
subtree that is isomorphic to Y .

Let σ be any cyclic order of V (Y ). We now show that T̄ admits no convex OOR with
respect to σ. To this end, we find an edge e of Y (i.e., a non-edge of T̄ ) that is a diagonal
of a convex quadrilateral Q formed by four non-edges of Y . Observe that any non-edge
of Y must be an edge of T̄ (otherwise T would contain a cycle). Hence, the non-edge e of T̄

(being enclosed by a 4-cycle of edges of T̄ ) does not have a candidate gap, which by Lemma 4
implies that T̄ does not admit a convex OOR.

It remains to show the existence of e and Q. Without loss of generality, let ⟨c, r, m, ℓ⟩ be
the order of c and its children in σ. We distinguish four cases.

(a) (b)

Figure 8 (a) The smallest tree Y that is not a caterpillar and (b) a non-convex OOR of Ȳ .

CGT
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c
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m
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m′

(a) Case 1

αc
ℓ
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r′
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(b) Case 2

αc
ℓ

m m′

ℓ′

r

(c) Case 3

αc
ℓ

m r

m′

ℓ′

(d) Case 4

Figure 9 Case distinction in the proof of Theorem 5: (a) Case 1: cm is not intersected; (b) Case 2:
ℓℓ′ intersects cm, α ∩ Y ̸= ∅; (c) Case 3: ℓℓ′ intersects cm, α ∩ Y = ∅, and c, r, m′ appear in this
order in σ; (d) Case 4: otherwise.

Case 1: None of the edges of Y intersects cm; see Figure 9a.
Then e = cm lies inside the quadrilateral Q = ⟨c, r′, m, ℓ′⟩ formed by non-edges of Y .

In the following three cases, we assume, without loss of generality, that ℓℓ′ intersects cm. Let
α be the open circular arc from c to ℓ′ in clockwise direction.
Case 2: α ∩ Y ̸= ∅, i.e., at least one vertex of Y lies in α, say r; see Figure 9b.

Then e = ℓℓ′ lies inside the quadrilateral Q = ⟨ℓ, r, ℓ′, m⟩.
In the remaining two cases, we assume that α ∩ Y = ∅.
Case 3: The vertices c, r, and m′ appear in this order in σ; see Figure 9c.

Then e = cr lies inside the quadrilateral Q = ⟨c, ℓ′, r, m′⟩.

Case 4: Otherwise; see Figure 9d.
Then e = mm′ lies inside the quadrilateral Q = ⟨ℓ, m′, r, m⟩.

To conclude, e and Q always exist. ◀

Figure 8a depicts the smallest tree Y that is not a caterpillar and, hence, its complement Ȳ

does not admit a convex OOR. The graph Ȳ does, however, admit an OOR; see Figure 8b.

Complete graph minus a cycle. Using the gap condition (Lemma 4), we can prove the
following theorem in a similar way as Theorem 5. Let Ck be a simple cycle of length k.

▶ Theorem 6. Let 3 ≤ k ≤ n. Then the graph Gn,k = Kn − E(Ck) admits a convex OOR if
and only if k ∈ {3, 4, n}.

Proof. First, we show that, for k ∈ {3, 4, n}, the graph Gn,k admits a convex OOR. To
this end, we place the vertices v1, . . . , vk of Ck as an interval on a circle. If k < n, we
place the remaining vertices in an arbitrary order, also as an interval, on the same circle.
For k = 3, the vertex order of C3 is determined; see Figure 10a. For k = 4, we place the
vertices of C4 in the order ⟨v1, v2, v4, v3⟩; see Figure 10b. For k = n, we take the vertex
order of Cn; see Figure 10c. In the cases k = 3 and k = n, let V ′ = V (Gn,k). In the case
k = 4, let V ′ = V (Gn,k) \ {v2, v4} and note that v2 and v4 are adjacent in Gn,k. In all cases
all vertices in V ′ satisfy the consecutive-neighbors property and V ′ covers all non-edges.
Therefore, by Lemma 3, the graph Gn,k admits a convex OOR with respect to the cyclic
vertex order (depending on k) described above. Note that, in all cases, we fixed only the
cyclic order of vertices and not their specific position. Thus, we can obtain the regular OORs.

Now let k ∈ {5, . . . , n − 1}. The graph Gn,k contains at least one vertex v that is adjacent
to all other vertices. Let σ be any cyclic order of V (Gn,k) starting at v in clockwise direction.
We prove that Gn,k does not admit a convex OOR with respect to σ. To this end, let c be
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(a) G8,3 (b) G8,4 (c) G8,8

Figure 10 Regular OORs of the graph Gn,k for n = 8 and (a) k = 3, (b) k = 4, (c) k = n.

the first vertex of Ck after v in σ. Let c′ be the last vertex in σ that is not adjacent to c.
We consider two cases.
Case 1: There is only one vertex m of Ck in the interval (c, c′); see Figure 11a.

Note that cm is a non-edge. Let m′ be the other vertex that shares a non-edge with m.
Note that m′ lies between c′ and v since c is the first vertex of Ck after v. Hence, mm′ is
a diagonal of the quadrilateral Q = ⟨v, m, c′, m′⟩. We argue that the edges of Q belong
to Gn,k. By the choice of v, this is the case for vm and vm′. The same holds true also for
mc′ and c′m′, otherwise the non-edges of Gn,k would contain a C3 or a C4, respectively.
However, Gn,k has a simple k-cycle of non-edges with k ≥ 5.

Case 2: There are at least two vertices of Ck in the interval (c, c′); see Figure 11b.
Recall that cc′ is a non-edge of Gn,k. For Gn,k to admit a convex OOR with respect to σ,
by Lemma 4, cc′ would have to have a candidate gap g, i.e., an edge mm′ of Ck. Due to
the presence of the edges vc and vc′, the gap g must lie on the side of cc′ opposite of v. By
the definition of a candidate gap, no edge connects the intervals [c, m] and [m′, c′]. This
implies that cm′ and mc′ are non-edges. Hence, ⟨c, c′, m, m′⟩ is a 4-cycle of non-edges –
a contradiction to the fact that Gn,k has a simple k-cycle of non-edges only with k ≥ 5.

In both cases, we have that Gn,k does not admit a convex OOR with respect to σ. ◀

4 Regular outside obstacle representations

This section deals with regular OORs of three graph classes. A cactus is a connected graph
where every edge is contained in at most one simple cycle. The weak dual of a plane graph
or a planar drawing is its dual graph without the vertex corresponding to the outer face. An
outerpath is a graph that admits an outerpath drawing, i.e., an outerplanar drawing whose
weak dual is a path. Let Pk = ⟨v1, . . . , vk⟩ denote a (simple) path with k vertices. A graph G

is a grid graph (or simply a grid) if there are positive integers k and ℓ such that G = Pk□Pℓ,

v

c

c′

m
m′

(a) Case 1: (c, c′) ∩ V (Ck) = {m}
v

c

m
c′

m′g

(b) Case 2:
∣∣(c, c′) ∩ V (Ck)

∣∣ > 1

Figure 11 Case distinction in the proof of Theorem 6.
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that is, if V (G) = V (Pk) × V (Pℓ) and if G contains an edge between two vertices (vi, vj) and
(vi′ , vj′) if and only if |i − i′| = 0 and |j − j′| = 1 or vice versa.

▶ Theorem 7. Every cactus has a reducible regular OOR.

Proof. For the given cactus G, we first compute the block-cut tree (whose definition we
recall below). Then, following the structure of the block-cut tree, we treat the blocks one by
one. For each block, we insert its vertices as an interval into the vertex order of the subgraph
that we have treated so far. Finally, we prove that the resulting cyclic vertex order yields a
reducible regular OOR.

A block-cut tree of a connected graph is a tree that has a vertex for each cut vertex and
for each block, which can either be a maximal biconnected subgraph or a bridge (cut edge).
There is an edge in the block-cut tree for each pair (B, v) of a block B and a cut vertex v

with v ∈ V (B). For an example of a block-cut tree of a cactus, see Figure 12. We root the
block-cut tree in an arbitrary block vertex and number the block vertices according to a
breadth-first search traversal starting at the root.

2

1

3

9

5

6

4

7
8

1

2 3 4 5 6

7 8

9

Figure 12 A cactus and its block-cut tree. White tree nodes correspond to cut vertices in the
cactus.

In order to draw the cactus G, we treat its blocks one by one and insert the vertices of
each block into the cyclic order, starting with the root block. For each further block B, there
is a cut vertex vB ∈ V (B) ∩ V (B′) where B′ is a block that we have treated earlier. We
insert the vertices of B as an interval between vB and its clockwise successor in the current
cyclic vertex order. For the root block B⋆, let vB⋆ be an arbitrary vertex of B⋆ (marked by
a white square in Figures 12 and 13).

Now we draw the current block B. If B is a single edge vBw, we place w immediately
behind vB . If B is a cycle with k vertices (k ≥ 3), we start with the cut vertex vB and proceed
in a zig-zag manner, mapping the vertices to positions 1 (which is vB), k, 2, k − 1, . . . , ⌈(k +
1)/2⌉; see Figure 13 (center). For k ≤ 4, all vertices of B satisfy the consecutive-neighbors
property. For k ≥ 5, exactly two vertices do not satisfy this property, but these two vertices
are adjacent, so by Lemma 3 all non-edges of B intersect the outer face as required.

Now we draw G by placing the vertices in the cyclic order on a circle that we just defined;
the exact positions on the circle do not matter. Consider the convex hulls of the blocks in the
drawing. Observe that any two of them share at most one vertex. Moreover, the boundary
of each convex hull lies completely in the outer face of the drawing. In the process described
above, each block has its own OOR due to Lemma 3. Hence, the whole drawing is an OOR
of G. The representation is reducible since each vertex has degree at most 2 within each
block, and each block is surrounded by the outer face.

Since only the order of the vertices along the circle is important for the OOR, not their
exact positions, it is easy to obtain a regular OOR. For the same reason, even cactus forests
admit OORs. ◀



Firman, Kindermann, Klawitter, Klemz, Klesen, and Wolff 2:13

1
2

4

6

9

5

3

7

8

2

1

3

9

5

6

4

7
8

vB

Figure 13 Constructing a reducible regular OOR of a cactus.

▶ Theorem 8. Every grid has a reducible regular OOR.

Proof. Let k and ℓ be positive integers such that the grid is G = Pk□Pℓ. We name the
vertices of Pk such that Pk = ⟨v1, . . . , vk⟩. We assume that k ≥ ℓ. We place the vertices
of each copy of Pk in a zig-zag manner on consecutive corners of a regular kℓ-gon, that
is, in the order vk, vk−2, vk−4, . . . , v5, v3, v1, v2, v4, . . . , vk−1 if k is odd and in the order
vk, vk−2, vk−4, . . . , v4, v2, v1, v3, v5, . . . , vk−1 if k is even; see Figure 14. If ℓ = 1, then G is
a path and the zig-zag order that we just described defines a regular OOR, hence we may
assume that ℓ ≥ 2 from now on. The copies of Pk (black in Figure 14) are placed directly
one after the other. This fixes our drawing of G.

v1 v2 v3 v4 v5

x

y

v1

v2

v3

v4

v5 t

s

Figure 14 Constructing a reducible regular OOR of the grid P5□P3.

Given a pair {s, t} of vertices of G, we say that the cyclic length of the edge or non-edge
st is d if the line through s and t splits the plane into two open halfplanes such that the
one that contains fewer vertices of G contains exactly d − 1 vertices. Within Pk, the longest
edge is vk−1vk; it has cyclic length k − 1. Since the copies of Pk are placed directly one after
the other, every edge within a copy of Pℓ (colored lightly in Figure 14) has cyclic length
exactly k.

We now show that every non-edge intersects the outer face. First, consider a non-edge st

that has cyclic length at least k + 1; see Figure 14. Then it is longer than every edge of G;
hence it intersects the gap region g between the first and the last copy of Pk. Note that
non-edges of length exactly k exist only between vertices of the first and the last copy of Pk,
but these non-edges, too, intersect the gap region g.

Next, consider a non-edge xy that has length less than k. As every vertex of G, x is
incident to one or two edges of length k (contained in a copy of Pℓ) and to one or two edges
of length less than k (contained in a copy of Pk). Let W =

x be the wedge with apex x formed

CGT
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W=
x

W<
x

W out
x

W in
x

x = vi

y = vjv1v2

vi+1

Figure 15 The four wedges with respect to a vertex x of the grid graph Pk□Pℓ. The black edges
represent a copy of Pk. The two colored edges of length k belong to the same copy of Pℓ.

by (and including) the length-k edge(s) – if there is just one such edge, then W =
x is the ray

starting in x that contains this edge; see Figure 15. Similarly, let W <
x be the wedge formed

by (and including) the shorter edge(s). Hence, the angular space around x is subdivided
into four wedges: W =

x , W <
x , W in

x , and W out
x , where W out

x is the (open) wedge between W =
x

and W <
x that intersects the outer face of the drawing in the vicinity of x, and W in

x is the
remainder of the plane. Let W =

y , W <
y , W in

y , and W out
y be defined analogously with respect

to y. Note that the line segment xy is neither contained in W =
x nor in W <

x . This is due
to the fact that W =

x contains only vertices of distance greater than k and W <
x contains no

vertices in its interior. For the same reasons, xy is neither contained in W =
y nor in W <

y . We
now show that xy lies in W out

x or in W out
y , which implies that xy intersects the outer face of

the drawing in the vicinity of x or y, respectively. We consider two cases.
Case 1: Vertex y belongs to the same copy of Pk as x.

Let i, j ∈ {1, . . . , k} be such that x = vi and y = vj . First suppose that j < i; see
Figure 15. Then, by our layout, the cyclic length of xy is less than i. The non-edges
in W in

x , however, have cyclic length at least i. (The edge vivi+1 is the shortest edge
in W in

x and has cyclic length i; see Figure 15.) Hence, xy cannot lie in W in
x and must lie

in W out
x . If j > i, we can argue analogously (by swapping x with y and i with j) to show

that xy lies in W out
y .

Case 2: Vertex y lies in a different (but neighboring) copy of Pk, say, the next copy; see
Figure 14 (right).
If xy lies in W out

x , we are done. So suppose that xy lies in W in
x . This implies that x

must lie in the first half (that is, x ∈ {vk, vk−2, . . . , v1}) of its copy. Since the cyclic
length of xy is less than k, y must lie in the first half of its copy, too. Due to our layout
of Pk, the (short) edges in W <

y go to the other half of the copy. Therefore, the length-k
edges that define W =

y must lie between the short non-edge xy and the short edges that
define W <

y . In other words, xy lies in W out
y .

For reducibility, we can argue similarly as for the non-edges. Indeed, every edge of cyclic
length k is incident to the gap region g between the first and last copy of Pk; see Figure 14
(right). The shorter edges alternate in direction, so for i ∈ {1, . . . , k − 1}, the edge vivi+1
of Pk is adjacent to the outer face in the vicinity of vertex vi+1. ◀

▶ Theorem 9. Every outerpath has a reducible regular OOR.

Proof. Let G be an n-vertex outerpath, and let Γ be an outerpath drawing of G. We
show that G admits a reducible regular OOR. The statement is trivial for n ≤ 3, so assume
otherwise. By reducibility and appropriately triangulating the inner faces of Γ, we may assume
without loss of generality that each inner face of Γ is a triangle. Let the path ⟨t1, t2, . . . , tn−2⟩
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be the weak dual of Γ. Let Vi denote the set of vertices of G that are incident to the triangles
t1, t2, . . . , ti. By definition, V1 contains a vertex v1 of degree 2. For 4 ≤ i ≤ n, let vi denote
the unique vertex in Vi−2 \

⋃i−3
j=1 Vj , where

⋃i−3
j=1 Vj = {v1, v2, . . . , vi−1}; see Figure 16 (left).

For 4 ≤ i < n, the vertex vi is incident to an inner edge ei = vivj of Γ such that j < i

and vj belongs to the triangle ti−3. Let Gi = G[v1, v2, . . . , vi]. We iteratively construct
reducible regular OORs Γ3, Γ4, . . . , Γn of G3, G4, . . . , Gn(= G), respectively. We create Γ3 by
arbitrarily drawing G3 on the circle. For 4 ≤ i < n, to obtain Γi for from Γi−1, we consider
the inner edge ei = vivj and place vi next to vj on the circle, avoiding the (empty) arc of
the circle that corresponds to ei−1; see Figure 16 (right). So if vj is incident to multiple
inner edges, then the corresponding neighbors of vj alternate on the circle. The vertex vn is
placed next to vn−1, avoiding the arc that corresponds to en−1. (This yields that vn has the
consecutive neighbors property.) Note that we fixed only the cyclic order of vertices and not
their specific position. Thus, we can place the vertices on a regular polygon.
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Figure 16 A drawing Γ of an outerpath G and a reducible regular OOR of G based on Γ. Inner
edges are black, outer edges are blue, weak dual edges are green.

Now we show that each Γi, for i ∈ {3, . . . , n}, is indeed a reducible regular OOR. For any
three points a, b, and c on the circle C, let h+c

ab be the open half-plane that is defined by
the line ℓab through a and b and that contains c. Similarly, let h−c

ab be the open half-plane
defined by ℓab that does not contain c. Hence, h+c

ab ∪ ℓab ∪ h−c
ab = R2.

Let u, v, and v′ be the vertices of the triangle ti−1 with i ∈ {2, . . . , n − 2} such that vv′

is an inner edge. Furthermore, let w be a new vertex of ti and, without loss of generality, let
vw be an inner edge if i ̸= n − 2, see Figure 17. By construction of the cyclic order described
above, we keep the invariant that when we place w on C, h−u

vw is empty and h−u
v′w contains

only v (among the vertices placed so far).
Now we show that when we add the vertex w, and, thus, the triangle △wv′v, a non-edge

w

vv′

u = r

w

v

v′

u

x

Figure 17 Constructing a representation for outerpaths such that the invariants are maintained.
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that goes through the outer face of the drawing Γi−1 of Gi−1 continues to do so in the
drawing Γi of Gi. We assume that △uv′v is oriented counterclockwise (as in Figure 17).
Let r be the last neighbor of v in Gi−1 in the cyclic order that starts from v and follows
the circle counterclockwise. Since u is a neighbor of v, r = u (as in Figure 17) or r lies
strictly between u and v, but r ≠ w because w ̸∈ V (Gi−1). Note that the half-plane h−u

v′w

contains (the interior of) △wv′v, but v is the only vertex in h−u
v′w. Therefore, only non-edges

incident to v can be affected by the addition of △wv′v, and among these only the ones that
go through the outer face of Γi−1 in the vicinity of v. These are the non-edges (dashed red
in Figure 17) that are incident to v and lie in the half-plane h−v′

rv that is induced by rv

and does not contain v′. Any such non-edge vx intersects v′w since v and x lie on different
sides of v′w. The intersection point of vx and v′w lies on the outer face of Γi because h−u

v′w

contains only v and, in Gi, w is incident to only v and v′. This proves our claim regarding
the “old” non-edges.

The “new” non-edges (dotted orange in Figure 17) are all incident to w and lie in h−v
v′w.

Since the two neighbors of w, namely v and v′, are consecutive in Γi, all non-edges incident
to w go through the outer face – at least in the vicinity of w.

It remains to show that Γi is reducible. For the two new edges incident to w it is clear
that they are both part of the outer face – at least in the vicinity of w. Since h−u

vw is empty,
the only old edge that is affected by the addition of △wv′v is the edge vr. It used to be
part of the outer face at least in the vicinity of v. Arguing similarly as we did above for the
non-edge vx, we get that the intersection point of vr and v′w lies on the outer face. ◀

We consider two further simple graph classes that trivially admit regular OORs. A graph
is convex round if its vertices can be cyclicly enumerated such that the open neighborhood
of every vertex is an interval in the enumeration. A bipartite graph with bipartition (U, W )
of the vertex set is convex if U can be enumerated such that, for each vertex in W , its
neighborhood is an interval in the enumeration of U . Note that every complete bipartite
graph is convex. By definition, every convex round and convex bipartite graph admits a
cyclic order such that every vertex satisfies the consecutive-neighbors property (Lemma 3).
This yields the following.

▶ Observation 10. Every convex round and convex bipartite graph admits a regular OOR.

Our representations for convex round graphs, convex bipartite graphs, cacti, outerpaths,
and complements of caterpillars rely on the consecutive-neighbors property (Lemma 3).
Hence, any convex point set of size n is universal in the sense that it can be used as vertex
set for an OOR for any graph with n vertices from one of these families.

5 Small graphs

In this section we show that every graph with up to six vertices – except for the graph W6
depicted in Figure 2a – admits a regular OOR (see Proposition 11 below). Lang [9] showed
that every outerplanar graph with up to seven vertices admits a regular OOR. The 8-vertex
outerplanar graph in Figure 2b, however, does not admit any regular OOR (see Proposition 12
below). It is the only 8-vertex outerplanar graph with this property [9].

▶ Proposition 11. There exists a regular OOR for every graph with up to six vertices, except
for the wheel graph W6.

Proof. Note that W6 is isomorphic to G6,5 = K6 − E(C5). Hence, by Theorem 6, W6 does
not admit a convex OOR. Except for G6,5, we claim that every graph with at most six
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vertices satisfies the gap condition and admits a regular OOR. For graphs with up to four
vertices, this is not difficult to check. For graphs with five vertices, see Figure 18.

Figure 18 Every graph with up to five vertices admits a regular OOR.

For graphs with six vertices, we used the SAT formulation described in Section 3 to find
vertex orders that satisfy the gap condition for the vertex set of the regular hexagon. We
now argue that each such vertex order either directly induces a regular OOR or we can find
an alternative OOR. To this end, we have to check whether every non-edge intersects a gap
region. We do a case distinction depending on the length of the non-edges in terms of the
number of hexagon edges that they shortcut. There are three cases for a non-edge e (orange
dashed in Figure 19).

If e has length 1, e defines its own gap region, which it intersects.
If e has length 2 (see Figures 19a–19c), then there are three possible gaps (up to symmetry,
green dotted). For the gap condition to be satisfied for e, in some cases, there must be
further non-edges (purple dash-dotted). In all three cases, e does intersect a gap region.
If e has length 3 (see Figures 19d and 19e), there are two possible gaps (up to symmetry,
green dotted). For the situation in Figure 19d, the purple dash-dotted non-edge again
makes sure that e intersects the gap region of the green dotted non-edge. If, however, the
endpoints of e are not incident to the gap (see Figure 19e), then e may not intersect the
gap region of the green dotted non-edge. This is the case if four specific vertex pairs are
edges (blue solid). Then e touches the gap region, but does not intersect it. We analyze
this case below.

To solve the remaining case (with blue solid edges {1, 4}, {2, 3}, {3, 6}, {4, 5}; and orange
dashed, green dotted, and purple dash-dotted non-edges {2, 5}, {3, 4}, {2, 4}, {3, 5}, see
Figure 19e), we argue that for every graph with this pattern, there exists a vertex order that
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Figure 19 Given an orange dashed non-edge e, there are several (green dotted) candidate non-
edges whose gaps could be intersected by e. Depending on the green dotted candidate non-edge, the
existence of additional (purple dash-dotted) non-edges may be necessary to satisfy the gap condition.
Due to the blue solid edges, the drawing in (e) is not a regular OOR.
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Figure 20 The first row depicts sub-cases of the last case from Figure 19; the second row depicts,
for each of the upper sub-cases, an alternative vertex order that induces a regular OOR.

does induce a regular OOR. In Figure 20, the first row depicts five cases that cover all possible
graphs with the problematic pattern given the original vertex order; the second row depicts a
good vertex order for the same graph (where the endpoints of the edge {2, 5} are consecutive).
Our case distinction considers every subset S of the vertex pairs {{1, 2}, {1, 6}, {5, 6}} as
non-edges. In each case, the edges (black solid) and the non-edges (non-solid) are enforced by
the given case; gray line segments connect vertex pairs that can be either edges or non-edges.
Case 1: S = ∅ (first column of Figure 20).
Case 2: S = {{1, 2}, {5, 6}} and S = {{1, 2}, {1, 6}, {5, 6}} (second column).
Case 3: S = {{1, 2}, {1, 6}} (third column) and S = {{1, 6}, {5, 6}} (symmetric).
Case 4: S = {{1, 2}} (forth column) and S = {{5, 6}} (symmetric).
Case 5: S = {{1, 6}} (fifth column).
This shows that every graph with the problematic pattern admits a regular OOR. ◀

▶ Proposition 12. There exists an 8-vertex outerplanar graph that has no regular OOR.

Proof. Consider the 6-vertex outerplanar graph G in Figure 21. Up to rotation and mirroring,
it has only two regular OORs, which we tested using a variant of the SAT formulation
described in Section 3. We call the resulting OORs Type 1 if the brown edge passes through
the center of the regular hexagon, and Type 2 if the purple edge does, see Figure 21. Let H

be a supergraph of G such that the two new vertices u and w are incident to the endpoints
of the brown and the purple edge, respectively; see Figure 2b. None of the possibilities for
adding u and w into the cyclic order of the vertices of G in Figure 21 yields a regular OOR
since in each case one of the non-edges incident to u or to w (red dashed in Figure 22) lies
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completely in the interior of the drawing. The vertex orders in Figure 22 satisfy the gap
condition, but do not admit regular OORs. ◀

Type 1 Type 2

Figure 21 An outerplanar graph G and its regular OORs.

Type 1 Type 2

u u u

uw

w

w w

Figure 22 All possibilities for adding u and w into the cyclic order of the vertices of G in Figure 21.
In each drawing, the red dashed non-edge misses the outer face.

6 Open problems

We leave the following problems open.
What is the complexity of deciding whether a given graph admits an OOR?
Is the gap condition sufficient, i.e., does every graph with a cyclic vertex order satisfying
the gap condition admit a convex OOR?
Does every graph that admits a convex OOR also admit a circular OOR?
Does every outerplanar graph admit a (reducible) convex OOR?
Does every connected cubic graph except the Peterson graph (see Figure 6) admit a convex
OOR?
We have shown that every 2-tree and hence, every graph of treewidth 2, admits a reducible
OOR. Berman et al. [4] showed that there is a planar graph of treewidth 4 (see Figure 3)
that does not admit an OOR. What about (planar) graphs of treewidth 3? The smallest
3-tree that does not admit a convex OOR is the (planar) graph with seven vertices shown
in Figure 23. We verified this using the SAT formula described in Section 3.

In particular, we conjecture the following:

▶ Conjecture 13. Every outerplanar graph admits a reducible circular OOR.

The general idea is to show this only for one (infinite) family of outerplanar graphs and
to obtain the result for all outerplanar graphs via reducibility. In the family (Gh)h≥1 that
we propose, the graph Gh is the complete outerplanar 2-tree of height h. In the weak dual
tree of this graph, all dual vertices have degree either 3 or 1, and one dual vertex (the root)
has distance h to every leaf, see Figure 24.

For a parameter 0 < f ≤ 1/2, we then construct a circular outside-obstacle representation
of Gh as follows. Let p1, p2, and p3 be the vertices of the triangle corresponding to the root of

CGT
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(a) B7 (b) a non-convex OOR of B7

Figure 23 The smallest 3-tree B7 that does not admit a convex OOR.

p1

p2p3

m1m3

m2

ρ

(a) Graph G1 with weak dual T1

p1

p2p3

m1m3

R1

L1

RL1

LR1

RR1

LL1

m2

ρ

(b) Graph G3 with weak dual T3

Figure 24 Graph Gh with weak dual Th (brown dashed edges) for h ∈ {1, 3}. In each vertex, the
incoming edge from the primary (secondary) parent is drawn as a solid blue (red) arrow. Given the
labels in G1, the new vertices in G2 are labeled Li (Ri) if they are stacked to the left (right) of mi.
For h ≥ 3, the new vertices are labeled by appending L or R, respectively, to the label of the parent
with the longer label. (The subscript moves to the end of the label.) Hence, the label of a vertex v

describes the path in Th from the root ρ to the face that was created by adding v.

the weak dual tree. Place p1, p2, and p3 with equal distances on the circle. For j > 0, place
each level-j vertex v clockwise (−f)j · 120◦ away from its primary parent; see Figure 25. So
for odd j, v is placed right before its primary parent, and for even j, right after its primary
parent (in clockwise order).

The intuition behind this construction is that every non-edge either already goes through
a gap region for f = 1/2, or moves towards one when we decrease the value of f (which
clusters the drawing). One would then have to show that, for every h ≥ 1, there exists a
value fmax(h) such that the drawing defined above is an OOR (by Lemma 4). Finding a
recursive proof, however, turned out to be challenging. On the other hand, it is comparably
easy to show that the construction is reducible.
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