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Abstract
Ghomi proved that every convex polyhedron could be stretched via an affine transformation so that
it has an edge-unfolding to a net [5], a non-overlapping planar polygon. One can view his result as
establishing that every combinatorial polyhedron P has a metric realization P that allows unfolding
to a net.

Joseph Malkevitch asked if the reverse holds (in some sense of “reverse”): Is there a combinatorial
polyhedron P such that, for every metric realization P in R3, and for every spanning cut-tree T

of the 1-skeleton, P cut by T unfolds to a net? In this paper we prove the answer is no: Every
combinatorial polyhedron has a realization and a cut-tree that edge-unfolds the polyhedron with
overlap.
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1 Introduction

Joseph Malkevitch asked1 whether there is a combinatorial type P of a convex polyhedron P

in R3 whose every edge-unfolding results in a net. One could imagine, to use his example,
that every realization of a combinatorial cube unfolds without overlap for each of its 384
spanning cut-trees [17].2 The purpose of this paper is to prove this is, alas, not true: Every
combinatorial type can be realized and edge-unfolded to overlap: Theorem 1 (Section 3). For
an overlapping unfolding of a combinatorial cube, see ahead to Fig. 12.

The motivation for this work is Dürer’s Problem, which asks whether every convex
polyhedron has a non-overlapping edge-unfolding. This question was raised 50 years ago [15],
but a positive answer has been assumed for 500 years, starting with the work of Albrecht
Dürer. Despite considerable effort by researchers [7], the question remains open, with only
narrow classes of polyhedra proved to edge-unfold without overlap.

One of the strongest results in this area was obtained by Ghomi, who proved that every
convex polyhedron P could be stretched via an affine transformation so that it has an edge-
unfolding to a net [5]. Malkevitch asked if there is some combinatorial type of polyhedron
P whose every metric realization P always avoids overlap for all of its spanning trees. The
main result of this paper is to answer Malkevitch’s question no: every P has a realization
P and a spanning tree T so that P \ T overlaps. An implication of this result, together
with [5], is that a resolution of Dürer’s Problem must focus on the geometry rather than the
combinatorial structure of convex polyhedra.

1.1 Proof outline
The overall structure of the proof is as follows:

G ≡ P → P → P̄ → Unfold/Overlap.

1 Personal communication, Dec. 2022.
2 Burnside’s Lemma can show that these 384 trees lead to 11 incongruent non-overlapping unfoldings of

the cube [6].
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2:2 Every Combinatorial Polyhedron Can Unfold with Overlap

The combinatorial polyhedron P is given by a 3-connected planar graph G. Tutte embedding
and Maxwell-Cremona lifting maps P to a convex polyhedron P ⊂ R3. We then modify P

by an affine transformation to P̄ . A particular spanning cut tree T then unfolds P̄ with
overlap, i.e., flattening P \ T results in a non-simple polygon, one sharing interior points.

We next offer preliminaries defining terms and describing tools we will employ.

2 Preliminaries

A convex polyhedron P is the convex hull of a finite number of points in R3. The 1-skeleton
of P is the metric graph formed by its vertices and edges. A combinatorial polyhedron P is
given by its 3-connected planar graph G, without metric information. By Steinitz’s theorem,
G is the 1-skeleton of a convex polyhedron. A Schlegel diagram is a representation of a
combinatorial polyhedron as a plane graph. See ahead to Fig. 1 for an example.

The curvature at points of P is concentrated at its vertices. The discrete Gaussian
curvature at a vertex v is the angle gap at v, 2π minus the incident face angles. The Gauss
map connects the curvature to face normals. Let S be the unit-radius Gaussian sphere.

▶ Proposition 0. The discrete Gaussian curvature at a vertex v is the area of the geodesic
polygon on S determined by the normals to the faces incident to v.

See [16] or [1], or ahead to Fig. 10 for an example. Henceforth we abbreviate “discrete
Gaussian curvature” to curvature.

The Maxwell-Cremona correspondence connects a straight-line graph G embedded in the
plane to its lifting. A lifting is an assignment of heights to the vertices such that the vertices
of every face are coplanar. A convex lifting must satisfy in addition that each edge shared by
two faces is convex. An equilibrium stress on a graph G is an assignment of weights to each
edge of G, which, when interpreted as forces, induce an equilibrium (sum to zero) at every
vertex. The Maxwell-Cremona correspondence says that a plane graph with an equilibrium
stress of positive weights lifts to a convex polyhedron. See ahead to Fig. 2 for an example.

We will not need details of this correspondence, but only that Tutte’s theorem [19]
determines a positive equilibrium stress for a given plane graph G, which then leads to a
convex lifting, i.e., to a convex polyhedron [12, p. 117].

Finally, we turn to Dürer’s problem, which asks whether every convex polyhedron has
an edge-unfolding that avoids overlap [7]. An edge-unfolding is an unfolding (development)
of a polyhedron to a polygon in the plane by cutting a spanning tree of its 1-skeleton and
flattening. We distinguish between strong overlap when the unfolding shares interior points,
and weak overlap where the boundary of the polygon may touch but not cross itself. An
edge-unfolding that avoids strong overlap is called a net, a weakly simple polygon [2]. An
unfolding that avoids weak overlap is a simple polygon—a Jordan curve.

3 Main theorem

The main result of this paper can now be stated:

▶ Theorem 1. Any combinatorial convex polyhedron P, given by a 3-connected planar graph
G, can be realized as a convex polyhedron P in R3 whose 1-skeleton has a spanning cut-tree
T such that the edge-unfolding of P \ T strongly overlaps in the plane.
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3.1 Proof case structure
The proof consists of four cases, the first of which is in some sense the generic case. All
the cases depend on a pair of faces, B and F , where B becomes the base face of P , and F

contains (or is equal to) a triangle △, the overlap triangle. Case 1 applies whenever there is
a pair of faces B, F of disjoint faces (i.e., they share no vertices) and F is a triangle, F = △.
Here the proof is simple and intuitive. The other three cases have special conditions, and
their proofs are less straightforward. We list the other conditions before focusing on Case 1.

Case 1. There is a pair of disjoint faces B, F with F a triangle.
Case 2. There are pairs of disjoint faces B, F , but no pair includes a triangle.
Case 3. There are no pairs of disjoint faces, but there is a pair of faces B, F that share a

single vertex.
Case 4. Every pair of faces shares two or more vertices, which implies that each pair of faces

shares an edge.

Every convex polyhedron falls into one of these cases. Although we will see that all but
Case 4 can be proved by the same arguments, we opt to argue intuitively that Case 1 can be
settled by an especially simple approach.

4 Case 1

We describe the proof plan for Case 1 in the form of a multi-step algorithm. We will see that
only step (5) and (6) need be altered to cover the cases beyond Case 1. We will illustrate
the steps with an icosahedron before providing details.

Case 1 Algorithm. Realizing G to unfold with overlap.
Input: A 3-connected planar graph G.
Output: Polyhedron P̄ realizing G and a cut-tree T that unfolds P with overlap.

(1) Identify disjoint faces B, F , with F = △ a triangle.
(2) Embed B as a convex polygon in the plane.
(3) Apply Tutte’s theorem to calculate a positive equilibrium stress for G.
(4) Apply Maxwell-Cremona lifting of the stressed G to a convex polyhedron P .
(5) Compress P → P̄ vertically to reduce curvatures of △’s vertices (if necessary).
(6) Label △ = a1a2a3 to satisfy several conditions (to be described).
(7) Form cut-tree T , including 2-edge path Λ = a1a2a3 around △.
(8) Unfold P \ T → Overlap.

We are given a 3-connected planar graph G, which constitutes the combinatorial type
of a convex polyhedron. By Steinitz’s theorem, we know G is the 1-skeleton of a convex
polyhedron.

(1) Identify disjoint faces B, F , with with F = △ a triangle. This is the assumption that
constitutes Case 1.

The next three steps realize G with a convex polyhedron P .
(2) Embed B as a convex polygon in the xy-plane. Select coordinates for the vertices of B,

which then pin B to the plane. B must be convex, but otherwise its shape is arbitrary.

CGT
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(3) Apply Tutte’s theorem [19] to calculate an equilibrium stress—positive weights on each
edge of G—that, when interpreted as forces, induce an equilibrium (sum to zero) at every
vertex. This provides explicit coordinates for all vertices interior to B. The result is a
Schlegel diagram, with all interior faces convex regions, and all nonbase vertices strictly
interior to B. Fig. 1 illustrates this for the icosahedron.3

Figure 1 Icosahedron Schlegel diagram. The outer triangle is base B.

(4) Apply Maxwell-Cremona lifting to P . The Maxwell-Cremona theorem says that any
straight-line planar drawing with an equilibrium stress has a polyhedral lifting via a
“reciprocal diagram.” The details are not needed here;4 we only need the resulting lifted
polyhedron P . An example from [13], Fig. 2, shows the vertical z-lifting of a Schlegel
diagram of the dodecahedron. A z-lifting of the vertices of the icosahedron in Fig. 1 is
shown in Fig. 3.5

After the lifting, we have realized P with a polyhedron P that has the particular structure
of a base into which all non-base vertices project.

(5) z-compress P → P̄ vertically to reduce curvatures of △’s vertices (if necessary). Not
needed in icosahedron example, but guaranteed by Lemma 4 below.

(6) Label △ = a1a2a3 satisfying several conditions (to be described).
(7) Form cut-tree T , including the 2-edge path Λ = a1a2a3 around △, with deg(a1) = 1 and

deg(a2) = 2. We can think of a1 as the root of the spanning tree, which includes the
Λ-shaped (red) path a1a2a3 around △. The remainder of T is completed arbitrarily.

(8) Unfold P \ T . Finally, the conditions on △ ensure that cutting T unfolds P with overlap
in the vicinity of a2. See Fig. 5.

4.1 Loose overlap conditions
We continue to focus on Case 1, when △ is disjoint from B. The following are sufficient
conditions to guarantee overlap, and each is achievable (Lemma 3). (Other cases will need a
tightening of these conditions.) Let ωi denote the curvature at vertex ai.

3 Here the drawing is approximate, because I did not explicitly calculate the equilibrium stresses.
4 A good resource on this topic is [12].
5 This is again an approximation as I did not calculate the reciprocal diagram.
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Figure 2 Maxwell-Cremona lifting of a dodecahedral diagram. [13], by permission of author.

Figure 3 Vertical z-lifting the vertices of the icosahedron Schlegel diagram in Fig. 1.

CGT
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Figure 4 Red: face numbers; blue: vertex indices. Face 5 is △. Λ-portion of spanning tree T red;
remainder blue.



J. O’Rourke 2:7

5
11

6

8

15
16

17 4

5 6

5

6

8
16

5

6

8

11

11

16

5

5

6

6

a2

a1

a3

a4

Figure 5 Close-up views of overlap.
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▶ Lemma 2 (Loose Overlap Conditions). If the following five conditions are satisfied for
△ = a1a2a3, cutting T guarantees overlap:

(a) △ is disjoint from B.
(b) With ω = max(ω1, ω2), ω < 20◦.
(c) With α the angle of △ at a2, α ≤ 60◦.
(d) The lengths ratio r = |a2a3|

|a1a2| satisfies r ≥ 1.
(e) The cut-tree T includes the 2-edge path Λ = a1a2a3, with deg(a1) = 1 and deg(a2) = 2.

a2

a'3
a1 a3

20°

20°

10°10°

60°

a2

a1 a3

60°

(a) (b)

α
ω

ω

80°

a''3

a'2

a'3

a''3

Figure 6 (a) α = 60◦ and ω = 20◦ just avoids overlap—only grazing contact, whereas (b) ω = 10◦

(strongly) overlaps.

a2

a1

a3
20°

(a) (b)

20°

a2

a3

a1

20°

20°

Figure 7 α = 45◦, ω = 20◦. (a) small r (0.3) avoids overlap. (b) Relabeling so that r is larger
(> 3) guarantees overlap.

Proof. Sketch. We use Fig. 6 to explain why these conditions lead to overlap. By the
conditions on T , no other edge of T is incident to either a1 or a2. Embedding a neighborhood
of an interior point of △ fixed in the plane, the flattening of a1 and a2 to the plane can be
viewed as first turning the edge a2a3 by (at most) ω about a2, moving vertex a3 to a′

3, and
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then rotating the rigid path a1a2a′
3 about a1 by (at most) ω. An elementary calculation

shows that ω = 20◦ would just barely avoid overlap when α is at its largest (60◦): Fig. 6(b).
So when the curvatures ω1, ω2 at a1, a2 are both strictly less than ω = 20◦, and r ≥ 1,

(strong) overlap occurs. The role of the ratio r is illustrated in Fig. 7: small r could avoid
overlap (a), but relabeling enlarges r and guarantees overlap (b).

The reason we label this a Sketch is that the claim that overlap occurs under these
conditions requires a more formal proof, a proof provided later in Lemma 5. ◀

In the unfolded icosahedron in Fig. 4, the angle at a2 is ≈ 59◦, and the curvatures ω1, ω2 at
a1, a2 are approximately 2◦ and 8◦ respectively. So Lemma 2 is satisfied.

The basic reason these conditions “work” to create overlap is that the cut-path Λ around
△ is not radially monotone, a concept introduced in [8] and used in [9] and [11] to avoid
overlap.

Now we show that the five conditions are achievable:

▶ Lemma 3 (Loose Conditions Achievable). The five conditions in Lemma 2 are achievable
in Case 1.

Proof.

(a) B, △ are disjoint by assumption in Case 1.
(b) That the curvatures ω1, ω2 are both strictly less than ω = 20◦ is achieved by the vertical

z-compression step (5), Lemma 4 below.
(c) The angle α ≤ 60◦ is achieved by labeling (step (6)) the minimum angle of △ to be at

vertex a2.
(d) The lengths ratio r ≥ 1 is achieved by choosing the labeling of a1 and a3 so that edge

a2a3 is at least as long as edge a1a2; see again Fig. 7.
(e) We have the freedom to select the cut-tree T so that T includes the 2-edge path Λ = a1a2a3,

with deg(a1) = 1 and deg(a2) = 2.

◀

4.2 Vertical z-compression
We now justify step (5): P → P̄ . Recall B lies in the xy-plane. Define vertical z-compression
as scaling the z-coordinate of each vertex by 0 < sz < 1: (x, y, z) → (x, y, sz z).

▶ Lemma 4. Vertical z-compression reduces the curvature ω(v) at any interior (non-base)
vertex v below any given threshold ω.

Proof. Let a1, a2, a3 be a triangle of P incident to v, with v = a2. Without loss of generality,
translate P so that a2 is placed at the origin, and scale the z-coordinates of every vertex by
sz ∈ [0, 1]:

a1 =(a1x, a1y, sz a1z)
a2 =(0, 0, 0)
a3 =(a3x, a3y, sz a3z)

The normal vector to the triangle at a2 is

n̂ =(a2 − a1) × (a2 − a3)
=(sz cx, sz cy, cz)

CGT



2:10 Every Combinatorial Polyhedron Can Unfold with Overlap

where cx, cy, cz are constants in the coordinates of the three vertices. Because the z-component
cz of n̂ is unaffected by sz, n̂ → (0, 0, cz) as sz → 0, i.e., the normal vector approaches
pointing vertically, parallel to the z-axis.

Because this is true for all triangles sharing the vertex v = a2, all the normals of these
incident triangles approach parallelism with the z-axis. The Gauss map of these normals then
encloses a vanishing area on S. Therefore, by Proposition 0, the curvature at v approaches
zero, and selection of a sufficiently small s will reduce the curvature at v below any given
ω. ◀

5 Cases 2 and 3

The assumptions of Case 1—that there are two disjoint faces B, F , with F a triangle—allowed
us to achieve both α ≤ 60◦ and r ≥ 1 by z-compression in step (5) and then appropriate
choice of labeling △ = a1a2a3 in step (6).

We first describe Case 2 and Case 3 at a high level and what each needs to establish.
Case 2 retains disjointness, but no pair B, F includes a triangle F , so the analog of α

could be large. For example, no face angle in Fig. 2 is ≤ 60◦. Label three consecutive vertices
of F as △ = a1a2a3. The angle α at a2 might need to be reduced.

In Case 3, no pair of faces are disjoint, but there is a pair B, F that share a single vertex
v. (Whether or not F is a triangle is not relevant to this case.) We must arrange that v

plays the role of a3 in △a1a2a3, because only the curvatures at a1, a2 need be small; the
curvature at a3 might be large. With a3 identified with v, there is no possibility of relabeling
to achieve a large r ratio (Fig. 7).

We will establish overlap in both Cases 2 and 3 (and later Case 1) by x-stretching rather
than z-compression, stretching that will satisfy a tighter sufficiency lemma.

5.1 Tighter overlap conditions
▶ Lemma 5 (Tighter Sufficiency). If the following five conditions are satisfied for △ = a1a2a3,
cutting T guarantees overlap:

(a) a1 and a2 are disjoint from B. (But a3 could be a vertex of B.)
(b) With ω = max(ω1, ω2), ω < 20.
(c) With α the angle of △ at a2, α + 3ω/2 < 90◦.
(d) With |a1a2| = 1 so that r = |a2a3|, r > sin(ω)/ sin(α + 2ω).
(e) The cut-tree T includes the 2-edge path Λ = a1a2a3, with deg(a1) = 1 and deg(a2) = 2.

Proof. The five conditions parallel those in Lemma 2.

(a) Reflects the assumptions of Case 2 and 3.
(b) The limit on ω1, ω2 is the same as in Lemma 2: ωmax = 20◦.
(c) The point of the constraint α+3ω/2 < 90◦ is more evident if we define β = 90◦−(α+3ω/2).

Then β > 0 says that, in the notation of Fig. 8, a′
2a′′

3 is turned clockwise about a′
2 from

a′
2a2. If β were negative, then overlap would be avoided. (Note that if α, ω = 60◦, 20◦ as

in Lemma 2, α + 3ω/2 = 90◦ so β = 0—just touching as in Fig. 6(a).)
(d) The ratio r must be sufficient for a′

2a′′
3 to cross a1a2. If r is too short, as we’ve seen

(Fig. 7) crossing/overlap could be avoided, and, unlike in Case 1, we may not have the
freedom to relabel a1 and a3 to achieve long-enough r.

Scaling so that |a1a2| = 1 is no loss of generality and simplifies the algebra: now the
ratio r = |a2a3|. Let b be the length of a segment from a′

2, along the direction a′
2a′′

3 , that
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crosses a1a2 at a point t; see Fig. 8(b). Note that ∠a1, t, a′
2 = π − (α + 2ω), and so by

the triangle law of sines, b = sin(ω)/ sin(α + 2ω). Thus the constraint r > b ensures that
a′

2a′′
3 crosses a1a2.

The expression sin(ω)/ sin(α + 2ω) achieves its maximum6 when α = 0 and ω = ωmax =
20◦, the latter by (b) above. Calculation leads to bmax ≈ 0.53.

(e) As in Lemma 2, we have the freedom to select the cut-tree T so that deg(a1) = 1 and
deg(a2) = 2. Then the rotations depicted in Fig. 8 accurately describe the unfolding in
the vicinity of a2, and (strong) overlap is guaranteed because β > 0 and r > b.

◀

α ω

ω

α+ω

90°−ω/2

a2

a1

a3

a'2
a'3

a''3
a2

a1

b

t

a'2

a'3a3

a''3

ω

ω

β

(a) (b)

Figure 8 Similar to Fig. 6, unfolding the path Λ = a1, a2, a3: rotation of a2a3 by ω about a2

(blue), then rotation of a1a2a′
3 by ω about a1 (red). Crossing point t is marked. (a) α, ω = 60◦, 12◦,

α + 3ω/2 = 78◦. (b) α, ω = 5◦, 20◦, β = 55◦, r, b = 0.8, 0.48.

5.2 Two x-stretching lemmas
We achieve the conditions of Lemma 5 via x-stretching. First we show that x-stretching, like
z-compression, reduces curvature at vertices.

▶ Lemma 6. Horizontal x-stretching in any direction parallel to base B reduces the curvature
ω(v) at any interior (non-base) vertex v below any given threshold ω.

The proof is nearly identical to that of Lemma 4, except the normals at v approach lying in
a vertical yz-plane rather than approaching a vertical z-vector.

6 ∂α is negative, driving α to 0, and ∂ω is positive, driving ω to ωmax.

CGT
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Proof. Let a1, a2, a3 be a triangle of P incident to v, with v = a2. Without loss of generality,
translate P so that a2 is placed at the origin, and scale the x-coordinates of every vertex by
sx > 1:

a1 =(sx a1x, a1y, a1z)
a2 =(0, 0, 0)
a3 =(sx a3x, a3y, a3z)

So the stretch is along the x-axis. The normal vector to the triangle at a2 is

n̂ =(a2 − a1) × (a2 − a3)
=(cx, sx cy, sx cz)

where cx, cy, cz are constants in the coordinates of the three vertices. The x-component of n̂

is fixed independent of sx, while the y- and z-components grow large with sx. Therefore, as
sx → ∞, n̂ approaches lying parallel to the vertical yz-plane,

Because this is true for all triangles sharing the vertex v = a2, all the normals of these
incident triangles approach parallelism to the yz-plane. The Gauss map of these normals
then encloses a vanishing thin area on S. Therefore, by Proposition 0, the curvature at v

approaches zero, and selection of a sufficiently small sx will reduce the curvature at v below
any given ω. ◀

We next prove that x-stretching can reduce the angle α at any particular vertex a2, and
at the same time increase the ratio r. This is how conditions (c) and (d) of Lemma 5 are
satisfied.

▶ Lemma 7. Let △ = a1a2a3 be a triangle with a1a2 and a2a3 edges of P , while a1a3 might
not be an edge (instead a diagonal of face F ). Then horizontal x-stretching (parallel to the
base of P ) in a particular direction δ⃗ eventually reduces the angle α at a2 below any given
threshold, and at the same time increases the ratio r as close as desired to 1.

Note that “eventually” is necessary: α could increase before it decreases. See Fig. 11.

Proof. Place polyhedron P in a coordinate system so that the vertical yz-plane passes
through a1a3, and a2 lies in the x > 0 halfspace. The direction of x-stretching is then along
a ray δ⃗ perpendicular to the yz-plane and passing through a2. See Fig. 9 for an explicit
example.

It is clear from Fig. 11 that the angle α at a2 approaches 0 as sx → ∞, and at the same
time r = |a2a3|

|a1a2| approaches 1 as △ approaches isosceles. ◀

Now we show that the tighter conditions are achievable, including for Case 1.

▶ Lemma 8 (Tighter Conditions Achievable). The five conditions in Lemma 5 are achievable
in Cases 1,2,3.

Proof. The role of z-compression (Lemma 4) in Case 1 can be satisfied instead by Lemmas 6
and 7 because x-stretching reduces ω as well as α.

Cases 2 and 3 might both require adjustments in α, ω, r: reducing α and reducing
ω = max(ω1, ω2) to achieve α + 3ω/2 < 90◦ and so β > 0, and increasing r beyond the length
b in (d) of Lemma 5. Lemma 6 guarantees reducing ω, and Lemma 7 guarantees reducing
α and moving r toward 1 (Fig. 11). Because b < bmax ≈ 0.53, eventually r > b. Thus both
necessary conditions β > 0 and r > b can be achieved, and so overlap is guaranteed. ◀
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a1

a3

a2 a'2

v4 v'4

v5
v'5x

δ

z

y

Figure 9 x-stretching all triangles incident to a2 causes normal vectors at a′
2 to approach lying

in the yz-plane.

n
n'

Figure 10 The n̂i normal vectors from Fig. 9 before stretching (green) and n̂′
i after stretching

(blue), on the Gaussian sphere S.
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13°

23°

30°

a2

a1 a3

r = 0.35

r = 0.58

r = 0.82

y

x

Figure 11 α can be nonmonotonic with x-stretching, whereas r approaches 1 monotonically
(either from above or below 1)

.

5.3 Case 2 example: cube

Malkevitch’s example of a combinatorial cube falls under Case 2. We start from the standard
Schlegel diagram for a cube: one square inside another, and trapezoid faces between the
squares. Lifting to a polyhedron retains the bottom and top squares, B and F respectively.
B, F are disjoint, but F has no small angle: α = 90◦ and ω ≈ 12◦, α + ω ≈ 102◦, so
condition (b) of Lemma 5 fails. Identify one vertex of this square as a2 and x-stretch by a
factor of sx = 2 perpendicular to the vertical plane through a1, a3. See Fig. 12. This squeezes
B and F to 1 × 2 and 2 × 4 diamonds, so that the angle at a2 reduces from 90◦, in this case
to 2 arctan(1/2) ≈ 53◦. The curvatures ω1 = ω2 ≈ 6◦ are small enough so that all conditions
of Lemma 5 are satisfied, and (strong) overlap achieved.

5.4 Case 3 example: hexagonal prism

Next we detail an example that falls under Case 3, a hexagonal pyramid. Let v1, . . . , v6 be
the vertices of P and v7 the apex. A Schlegel diagram is shown in Fig. 13(a). No pair of
faces is disjoint, but there are B, F pairs that share a single vertex. Let B = v6v1v7 and
F = △ = v3v4v7 as illustrated. Then applying Tutte embedding and Maxwell-Cremona
lifting, we arrive at the polyhedon P shown in (b) of the figure.

We label a1, a2, a3 = v4, v3, v7 respectively. Note a3 is assigned to the vertex v7 shared
between B and F . The angle at a2 is α ≈ 79◦, and the curvatures ω1 = ω2 ≈ 24◦. So
α + 3ω/2 ≈ 115◦ violates condition (c) of Lemma 5.

In preparation for x-stretching, place a vertical yz-plane through a1, a3, and project a2
onto this plane, as in Fig. 14(a). Although stretching by a factor of 2 suffices, we illustrate
sx = 4 in Fig. 14(b) to highlight the changes. Now α ≈ 35◦, ω1, ω2 ≈ 7◦, and α + 3ω/2 ≈ 46◦,
satisfies condition (c). Fig. 14(c) shows that indeed overlap occurs.
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b1b3
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y
x

Figure 12 Unfolding of a combinatorial cube. The angle at α2 is reduced from 90◦ by (vertical)
x-stretching.
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Figure 13 (a) Schlegel diagram of hexagonal prism. (b) Lifted polyhedron P over base B = v6v1v7.
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(a)

(b)

(c)
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Figure 14 (a) Stretch direction δ⃗ will be along the dashed segment orthogonal to the yz-plane
containing a1 and a3. (b) After x-stretching by sx = 4. (c) Unfolding with red cut edges results in
overlap. Cut tree T = (a1, a2, a3), (a3, v1, v2), (a3, v6, v5).
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6 Case 4

This leaves the case where there are no two disjoint faces, nor two faces that share just a
single vertex: every pair of faces share two or more vertices. If two faces share non-adjacent
vertices, they cannot both be convex. So in fact the condition is that each two faces share
an edge. Then, it is not difficult to see that G can only be a tetrahedron, as the following
argument shows.

Start with Euler’s formula, V − E + F = 2, where V, E, F are the number of vertices,
edges, and faces respectively. Each vertex v must be incident to exactly three faces, because,
if v has degree ≥ 4, then each non-adjacent pair of faces incident to v cannot share an edge.
So 3V = 2E. Substituting into Euler’s formula yields F = 2 + E/3.

Because each pair of faces share an edge, F (F − 1) double counts edges:7 2E = F (F − 1).
Substituting,

F = 2 + E/3
E = F (F − 1)/2
F = 2 + F (F − 1)/6
0 = F 2 − 7F + 12
0 = (F − 3)(F − 4)

The two solutions of this quadratic equation are F = 3, which cannot form a closed polyhedron,
and F = 4. The tetrahedron is the only polyhedron with four faces, and indeed F = 4 implies
V = 4 and E = 6.

So the only case remaining is a tetrahedron. But it is well known that the thin, nearly
flat tetrahedron unfolds with overlap: Fig. 15. And since there is only one tetrahedron
combinatorial type, this completes the inventory.

7 Main theorem revisited

We summarize the proof of the main theorem below.

▶ Theorem 1. Any combinatorial convex polyhedron P, given by a 3-connected planar graph
G, can be realized as a convex polyhedron P in R3 whose 1-skeleton has a spanning cut-tree
T such that the edge-unfolding of P \ T strongly overlaps in the plane.

Proof. Cases 1, 2 and 3 are covered by Lemmas 5 and 8, all via x-stretching. Case 4 is
established by the overlapping thin tetrahedron (Fig. 15). As the four cases exhaust all
possibilities, the theorem is proved. ◀

So together with Ghomi’s result,8 any combinatorial polyhedron type can be realized to
edge-unfold and avoid overlap, or realized to edge-unfold with overlap by Theorem 1.

8 Open problems

(1) That each of the three parameters α, ω, r moves under x-stretching in the “right” direction
for overlap, suggests there could be a simpler proof of Lemma 8 and therefore of Theorem 1.

7 Similar logic is used to form Szilassi’s polyhedral torus.
8 See [14] for a different proof of [5].
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a

c d

a
b

c d

b

c

(a)

(b)
b

Figure 15 Fig. 28.2 in [4]: tetrahedron overlap. Blue: exterior. Red: interior. Cut tree T = abcd.

(2) Is there a combinatorial Hamiltonian polyhedron P whose every metric realization P and
every Hamiltonian path T , P \ T unfolds to a net? This restricts Malkevitch’s question
to Hamiltonian polyhedra P, and restricts T to a Hamiltonian path, producing a zipper
unfolding [3]. Note that some convex polyhedra are not Hamiltonian, e.g., the rhombic
dodecahedron. Restricting to 4-connected graphs G guarantees that G is Hamiltonian [18].

(3) We earlier described our result as: P → P → P̄ → Unfold/Overlap. Ghomi’s result is
stronger, in that he starts with a metrically realized polyhedron P → P̄ → Unfold/Non-
verlap. Can Theorem 1 be strengthened to achieve: P → P̄ → Unfold/Overlap, where
P → P̄ is an affine transformation?

Acknowledgements. I benefitted from discussions with Joseph Malkevitch and Richard
Mabry, from audience questions at CCCG [10], and from comments and corrections from
four referees.
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