
Dynamic Convex Hulls under Window-Sliding
Updates∗

Haitao Wang #

Kahlert School of Computing, University of Utah, Salt Lake City, Utah 84112, USA

Abstract
We consider the problem of dynamically maintaining the convex hull of a set S of points in the
plane under the following special sequence of insertions and deletions (called window-sliding updates):
insert a point to the right of all points of S and delete the leftmost point of S. We propose an
O(|S|)-space data structure that can handle each update in O(1) amortized time, such that standard
binary-search-based queries on the convex hull of S can be answered in O(log h) time, where h is the
number of vertices of the convex hull of S, and the convex hull itself can be output in O(h) time.

Keywords and phrases Dynamic convex hulls, data structures, insertions, deletions, sliding window

Digital Object Identifier 10.57717/cgt.v4i1.53

Acknowledgements The author would like to thank Joseph S.B. Mitchell for posing the question at
WADS 2023 about whether the O(log n) query time in the preliminary version of the paper can be
improved to O(log h), and thank Michael T. Goodrich for suggesting the idea of using finger search
trees to achieve this. This research was supported in part by NSF under Grants CCF-2005323 and
CCF-2300356.

1 Introduction

As a fundamental structure in computational geometry, the convex hull CH(S) of a set S of
points in the plane has been well studied in the literature. Several O(n log n) time algorithms
are known for computing CH(S), e.g., see [5, 27], where n = |S|, and the time matches
the Ω(n log n) lower bound. Output-sensitive O(n log h) time algorithms have also been
given [10, 21], where h is the number of vertices of CH(S). If the points of S are already
sorted, e.g., by x-coordinate, then CH(S) can be computed in O(n) time by Graham’s
scan [15].

Due to a wide range of applications, the problem of dynamically maintaining CH(S),
where points can be inserted and/or deleted from S, has also been extensively studied.
Overmars and van Leeuwen [25] proposed an O(n)-space data structure that can support
each insertion and deletion in O(log2 n) worst-case time; Preparata and Vitter [28] gave
a simpler method with the same performance. If only insertions are involved, then the
approach of Preparata [26] can support each insertion in O(log n) worst-case time. For
deletions only, Hershberger and Suri’s method [18] can support each update in O(log n)
amortized time. If both insertions and deletions are allowed, a breakthrough was given by
Chan [11], who developed a data structure of linear space that can support each update
in O(log1+ϵ n) amortized time, for an arbitrarily small ϵ > 0. Subsequently, Brodal and
Jacob [7], and independently Kaplan et al. [20] reduced the update time to O(log n log log n).
Finally, Brodal and Jacob [8] achieved O(log n) amortized time performance for each update,
with O(n) space.

Under certain special situations, better and simpler results are also known. If the
insertions and deletions are given offline, the data structure of Hershberger and Suri [19]

∗ A preliminary version of this paper appears in Proceedings of the 18th Algorithms and Data Structures
Symposium (WADS 2023).

© Haitao Wang
licensed under Creative Commons License CC-BY 4.0

Computing in Geometry and Topology: Volume 4(1); Article 3; pp. 3:1–3:14

mailto:haitao.wang@utah.edu
https://doi.org/10.57717/cgt.v4i1.53
https://creativecommons.org/licenses/by/4.0/
https://www.cgt-journal.org/

3:2 Dynamic Convex Hulls under Window-Sliding Updates

can support O(log n) amortized time update. Schwarzkopf [29] and Mulmuley [23] presented
algorithms to support each update in O(log n) expected time if the sequence of updates is
random in a certain sense. In addition, Friedman, Hershberger, and Snoeyink [14] considered
the problem of maintaining the convex hull of a simple path P such that vertices are allowed
to be inserted and deleted from P at both ends of P , and they gave a linear space data
structure that can support each update in O(log |P |) amortized time (more precisely, O(1)
amortized time for each deletion and O(log |P |) amortized time for each insertion). There
are also other special dynamic settings for convex hulls, e.g., [13, 17].

In most applications, the reason to maintaining CH(S) is to perform queries on it
efficiently. As discussed in Chan [12], there are usually two types of queries, depending on
whether the query is decomposable [4], i.e., if S is partitioned into two subsets, then the
answer to the query for S can be obtained in constant time from the answers of the query
for the two subsets. For example, the following queries are decomposable: find the most
extreme vertex of CH(S) along a query direction; decide whether a query line intersects
CH(S); find the two common tangents to CH(S) from a query point outside CH(S), while
the following line-intersection queries are not decomposable: find the intersection of CH(S)
with a vertical query line or more generally an arbitrary query line. It seems that the
decomposable queries are easier to deal with. Indeed, most of the above mentioned data
structures can handle the decomposable queries in O(log n) time each. However, this is
not the case for the non-decomposable queries. For example, none of the data structures
of [8, 7, 11, 14, 20] can support O(log n)-time non-decomposable queries. More specifically,
Chan’s data structure [11] can be modified to support certain non-decomposable queries
(such as the above line-intersection queries) in O(log3/2 n) time but the amortized update
time also increases to O(log3/2 n). Later Chan [12] gave a randomized algorithm that can
support certain non-decomposable queries in expected O(log1+ϵ n) time, for an arbitrarily
small ϵ > 0, and the amortized update time is also O(log1+ϵ n).

Another operation on CH(S) is to output it explicitly, ideally in O(h) time. To achieve
this, one usually has to maintain CH(S) explicitly in the data structure, e.g., in [18, 25].
Unfortunately, most other data structures are not able to do so, e.g., [8, 7, 11, 14, 19, 20, 28],
although they can output CH(S) in a slightly slower O(h log n) time. In particular, Bus
and Buzer [9] considered this operation for maintaining the convex hull of a simple path P

such that vertices are allowed to be inserted and deleted from P at both ends of P , i.e., in
the same problem setting as in [14]. Based on a modification of the algorithm in [22], they
achieved O(1) amortized update time such that CH(S) can be output explicitly in O(h)
time [9]. However, no other queries on CH(S) were considered in [9].

1.1 Our results
We consider a special sequence of insertions and deletions: the point inserted by an insertion
must be to the right of all points of the current set S, and a deletion always happens to the
leftmost point of the current set S. Equivalently, we may consider the points of S contained
in a window bounded by two vertical lines that are moving rightwards (but the window width
is not fixed), so we call them window-sliding updates.

To solve the problem, one can apply any previous data structure for arbitrary point
updates. For example, the method in [8] can handle each update in O(log n) amortized
time and answer each decomposable query in O(log n) time. Alternatively, if we connect
all points of S from left to right by line segments, then we can obtain a simple path whose
ends are the leftmost and rightmost points of S, respectively. Therefore, the data structure
of Friedman et al. [14] can be applied to handle each update in O(log n) amortized time

Haitao Wang 3:3

and support each decomposable query in O(log n) time. In addition, although the data
structure in [18] is particularly for deletions only, Hershberger and Suri [18] indicated that
their method also works for the window-sliding updates, in which case each update (insertion
and deletion) takes O(log n) amortized time. Further, the data structure [18] can support
binary-search-based queries in O(log n) time and report CH(S) in O(h) time.

In this paper, we provide a new data structure for the window-sliding updates. Our data
structure uses O(n) space and can handle each update in O(1) amortized time. Standard
binary-search-based queries on CH(S) can be answered in O(log h) time each.1 More
specifically, our data structure maintains a balanced binary search tree of height O(log h)
storing the vertices of CH(S); using the tree, binary-search-based queries on CH(S) can be
answered in O(log h) time in a standard way. Further, after each update, the convex hull
CH(S) can be output explicitly in O(h) time. Specifically, the following theorem summarizes
our result.

▶ Theorem 1. We can dynamically maintain the convex hull CH(S) of a set S of points in
the plane to support each window-sliding update (i.e., either insert a point to the right of all
points of S or delete the leftmost point of S) in O(1) amortized time, such that the following
operations on CH(S) can be performed. Let n = |S| and h be the number of vertices of
CH(S) right before each operation.
1. The convex hull CH(S) can be explicitly output in O(h) time.
2. Given two vertical lines, the vertices of CH(S) between the vertical lines can be output

in order along the boundary of CH(S) in O(k + log h) time, where k is the number of
vertices of CH(S) between the two vertical lines.

3. Each of the following queries can be answered in O(log h) time.
a. Given a query direction, find the most extreme point of S along the direction.
b. Given a query line, decide whether the line intersects CH(S).
c. Given a query point outside CH(S), find the two tangents from the point to CH(S).
d. Given a query line, find its intersection with CH(S), or equivalently, find the edges of

CH(S) intersecting the line.
e. Given a query point, decide whether the point is in CH(S).
f. Given a convex polygon of O(h) vertices (represented in any data structure that supports

binary search), decide whether it intersects CH(S), and if not, find their common
tangents (both outer and inner).

Comparing to all previous work, albeit on a very special sequence of updates, our result
is particularly interesting due to the O(1) amortized update time as well as its simplicity.

Applications. Although the updates in our problem are quite special, the problem still
finds applications. For example, Becker et al. [3] considered the problem of finding two
rectangles of minimum total area to enclose a set of n rectangles in the plane. They gave an
algorithm of O(n log n) time and O(n log log n) space. Their algorithm has a subproblem of
processing a dynamic set of points to answer queries of Type 3a of Theorem 1 with respect
to window-sliding updates (see Section 3.2 [3]). The subproblem is solved using subpath
convex hull query data structure in [16], which costs O(n log log n) space. Using Theorem 1,
we can reduce the space of the algorithm to O(n) while the runtime is still O(n log n). Note
that Wang [31] recently improved the space of the result of [16] to O(n), which also leads to

1 In the preliminary version of the paper at WADS 2023, the query time was O(log n). In this version, we
improve the query time to O(log h).

CGT

3:4 Dynamic Convex Hulls under Window-Sliding Updates

an O(n) space solution for the algorithm of [3]. However, the approach of Wang [31] is much
more complicated.

Becker et al. [2] extended their work above and studied the problem of enclosing a set
of simple polygons using two rectangles of minimum total area. They gave an algorithm
of O(nα(n) log n) time and O(n log log n) space, where n is the total number of vertices
of all polygons and α(n) is the inverse Ackermann function. The algorithm has a similar
subproblem as above (see Section 4.2 [2]). Similarly, our result can reduce the space of their
algorithm to O(n) while the runtime is still O(nα(n) log n).

We believe that our result may find other applications that remain to be discovered.

Outline. After introducing notation in Section 2, we will prove Theorem 1 gradually as
follows. First, in Section 3, we give a data structure for a special problem setting. Then we
extend our techniques to the general problem setting in Section 4. The data structures in
Section 3 and 4 can only perform the first operation in Theorem 1 (i.e., output CH(S)),
we will enhance the data structure in Section 5 so that other operations can be handled.
Section 6 concludes with some remarks.

2 Preliminaries

Let U(S) denote the upper hull of CH(S). We will focus on maintaining U(S), and the
lower hull can be treated likewise. The data structure for both hulls together will achieve
Theorem 1.

For any two points p and q in the plane, we say that p is to the left of q if the x-coordinate
of p is smaller than or equal to that of q. Similarly, we can define “to the right of”, “above”,
and “below”. We add “strictly” in front of them to indicate that the tie case does not happen.
For example, p is strictly below q if the y-coordinate of p is smaller than that of q.

For a line segment s and a point p, we say that p is vertically below s if the vertical line
through p intersects s at a point above p (p ∈ s is possible). For any two line segments s1
and s2, we say that s1 is vertically below s2 if both endpoints of s1 are vertically below s2.

Suppose L is a sequence of points and p and q are two points of L. We will adhere to the
convention that a subsequence of L between p and q includes both p and q, but a subsequence
of L strictly between p and q does not include either one.

For ease of exposition, we make a general position assumption that no two points of S

have the same x-coordinate and no three points are collinear.

3 A special problem setting with a partition line

In this section we consider a special problem setting. Let L = {p1, p2, . . . , pn} (resp.,
R = {q1, q2, . . . , qn}) be a set of n points sorted by increasing x-coordinate, such that all
points of L are strictly to the left of a known vertical line ℓ and all points of R are strictly
to the right of ℓ. Let L ∪ R = {p1, ..., pn, q1, ..., qn} denote the left-to-right sorted sequence
of all the points. Throughout, we maintain a consecutive subsequence of L ∪ R, denoted S.
Initially S = L. Each subsequent operation is either an insertion or a deletion. An insertion
adds the leftmost point of R that is not already in S, and a deletion removes the leftmost
point of L that is in S. Overall, there are a total of at most n insertions and n deletions,
which may be interspersed arbitrarily. More specifically, S = {pi, pi+1, ..., pn, q1, q2, ..., qj}
for some i and j. If the next operation is an insertion (implying that j < n), the point qj+1
is added at the right end of S. If the next operation is a deletion (implying that i < n), the

Haitao Wang 3:5

point pi is removed from the left end of S. Let U(S) denote the upper convex hull of the
current sequence S. We want to maintain U(S) subject to insertions and deletions.

Our result is a data structure that can support each update in O(1) amortized time, and
after each update we can output U(S) in O(|U(S)|) time. The data structure can be built in
O(n) time on S = L initially. Note that the set L is given offline because S = L initially, but
points of R are given online. We will extend the techniques to the general problem setting in
Section 4, and the data structure will be enhanced in Section 5 so that other operations on
CH(S) can be handled.

3.1 Initialization

Initially, we construct the data structure on L, as follows. We run Graham’s scan to process
points of L leftwards from pn to p1. Each vertex pi ∈ L is associated with a stack Q(pi),
which is empty initially. Each vertex pi also has two pointers l(pi) and r(pi), pointing to
its left and right neighbors respectively if pi is a vertex of the current upper hull. Suppose
we are processing a point pi. Then, the upper hull of pi+1, pi+2, . . . , pn has already been
maintained by a doubly linked list with pi+1 as the head. To process pi, we run Graham’s
scan to find a vertex pj (with j > i) of the current upper hull such that pipj is an edge of
the new upper hull. Then, we push pi into the stack Q(pj), and set l(pj) = pi and r(pi) = pj .
The algorithm is done after p1 is processed.

The stacks essentially maintain the left neighbors of the vertices of the historical upper
hulls so that when some points are deleted in the future, we can traverse leftwards from any
vertex on the current upper hull after those deletions. More specifically, if pi is a vertex
on the current upper hull, then the vertex at the top of Q(pi) is the left neighbor of pi on
the upper hull. In addition, notice that once the right neighbor pointer r(pi) is set during
processing pi, it will never be changed. Hence, in the future if pi becomes a vertex of the
current upper hull after some deletions, r(pi) is the right neighbor of pi on the current upper
hull. Therefore, we do not need another stack to keep the right neighbor of pi.

The above builds our data structure for U(S) initially when S = L. In what follows, we
discuss the general situation when S contains both points of L and R. Let S1 = S ∩ L and
S2 = S ∩ R. The data structure described above is used for maintaining U(S1). For S2, we
only use a doubly linked list to store its upper hull U(S2), and the stacks are not needed. In
addition, we explicitly maintain the common tangent t1t2 of the two upper hulls U(S1) and
U(S2), where t1 and t2 are the tangent points on U(S1) and U(S2), respectively. We also
maintain the leftmost and rightmost points of S. This completes the description of our data
structure for S.

Using the data structure we can output U(S) in O(|U(S)|) time as follows. Starting from
the leftmost vertex of S1, we follow the right neighbor pointers until we reach t1, and then
we output t1t2. Finally, we traverse U(S2) from t2 rightwards until the rightmost vertex. In
the following, we discuss how to handle insertions and deletions.

3.2 Insertions

Suppose a point qj ∈ R is inserted into S. If j = 1, then this is the first insertion. We set
t2 = q1 and find t1 on U(S1) by traversing it leftwards from pn (i.e., by Graham’s scan).
This takes O(n) time but happens only once in the entire algorithm (for processing all 2n

insertions and deletions), so the amortized cost for the insertion of q1 is O(1). In the following
we consider the general case j > 1.

CGT

3:6 Dynamic Convex Hulls under Window-Sliding Updates

`

t1
t2q

qjt′1

S1

S2

Figure 1 Illustrating the insertion of qj .

We first update U(S2) by Graham’s scan. This procedure takes O(n) time in total for
all n insertions, and thus O(1) amortized time per insertion. Let q be the vertex such that
qqj is the edge of the new hull U(S2) (e.g., see Fig. 1). If q is strictly to the right of t2, or
if q = t2 and t1t2 and t2qj make a right turn at t2, then t1t2 is still the common tangent
and we are done with the insertion. Otherwise, we update t2 = qj and find the new t1 by
traversing U(S1) leftwards from the current t1, and we call it the insertion-type tangent
searching procedure, which takes O(1 + k) time, with k equal to the number of vertices on
U(S1) strictly between the original t1 and the new t1 (and we say that those vertices are
involved in the procedure). The following lemma implies that the total time of this procedure
in the entire algorithm is O(n), and thus the amortized cost is O(1).

▶ Lemma 2. Each point of L ∪ R can be involved in the insertion-type tangent searching
procedure at most once in the entire algorithm.

Proof. We use t1 to refer to the original tangent point and use t′
1 to refer to the new one

(e.g., see Fig. 1). Let p be any point on U(S1) strictly between t′
1 and t1. Then, we have the

following observation: all points of L strictly to the right of p must be vertically below the
segment pqj .

Assume to the contrary that p is involved again in the procedure when another point
qk with k > j is inserted. Let t′′

1 be the tangent point on U(S1) right before qk is inserted.
As p is involved in the procedure, p must be on the current hull U(S1) and strictly to the
left of t′′

1 . According to the above observation, t′′
1 is vertically below the segment pqj (and

t′′
1 ̸∈ pqj due to the general position assumption). Since qj is in the current set S2 and p is in

the current set S1, and t′′
1 is vertically below the segment pqj , t′′

1 cannot be the left tangent
point of the common tangent of U(S1) and U(S2), incurring a contradiction. ◀

3.3 Deletions
Suppose a point pi ∈ L is deleted from S1. If i = n, then this is the last deletion. In this
case, we only need to maintain U(S2) for insertions only in the future, which can be done by
Graham’s scan. In the following, we assume that i < n.

Note that pi must be the leftmost vertex of the current hull U(S1). Let p = r(pi) (i.e., p

is the right neighbor of pi on U(S1)). According to our data structure, pi is at the top of the
stack Q(p). We pop pi out of Q(p). If pi ̸= t1, then pi is strictly to the left of t1 and t1t2
is still the common tangent of the new S1 and S2, and thus we are done with the deletion.
Otherwise, we find the new tangent by simultaneously traversing on U(S1) leftwards from
p and traversing on U(S2) leftwards from t2 (e.g., see Fig. 2). Specifically, we first check
whether pt2 is tangent to U(S1) at p. If not, then we move p leftwards on the new U(S1)
until pt2 is tangent to U(S1) at p. Then, we check whether pt2 is tangent to U(S2) at t2.

Haitao Wang 3:7

`

t1 t2

S1

S2
t′1

t′2
p

z

Figure 2 Illustrating the deletion of pi where pi = t1. t′
1t′

2 are the new tangent of U(S1) and U(S2)
after pi is deleted.

If not, then we move t2 leftwards on U(S2) until pt2 is tangent to U(S2) at t2. If the new
pt2 is not tangent to U(S1) at p, then we move p leftwards again. We repeat the procedure
until the updated pt2 is tangent to U(S1) at p and also tangent to U(S2) at t2. Note that
both p and t2 are monotonically moving leftwards on U(S1) and U(S2), respectively. Note
also that traversing leftwards on U(S1) is achieved by using the stacks associated with the
vertices while traversing on U(S2) is done by using the doubly-linked list that stores U(S2).
We call the above the deletion-type tangent searching procedure, which takes O(1 + k1 + k2)
time, where k1 is the number of points on U(S1) strictly between p and the new tangent
point t1, i.e., the final position of p after the algorithm finishes (we say that these points
are involved in the procedure), and k2 is the number of points on U(S2) strictly between
the original t2 and the new t2 (we say that these points are involved in the procedure). The
following lemma implies that the total time of this procedure in the entire algorithm is O(n),
and thus the amortized cost is O(1).

▶ Lemma 3. Each point of L ∪ R can be involved in the deletion-type tangent searching
procedure at most once in the entire algorithm.

Proof. Let p′ be a vertex on U(S1) strictly between p and the new tangent point t1 (which
is t′

1 in Fig. 2). We argue that p′ cannot be involved in the same procedure again in the
future. Indeed, p′ was not a vertex of U(S1) before pi is deleted because it was vertically
below the edge pip of U(S1). After pi is deleted, since p′ is involved in the procedure, p′

must be a vertex of U(S1). Further, p′ will always be a vertex of U(S1) until it is deleted.
Hence, p′ will never be involved in the procedure again in the future (because to do so p′

cannot be a vertex of U(S1) right before the deletion).
Let t′

2 be the new t2 and t2 be the original one. Let z be a vertex on U(S2) strictly
between the two (e.g., see Fig. 2). We argue that z will never be involved in the same
procedure again in the future. Let t′′

2 be the tangent point on U(S2) right before an update
in the future. We assume inductively that t′′

2 is either at t′
2 or strictly left of t′

2. Note that
initially we have t′′

2 = t′
2 and therefore the assumption holds. Depending on whether the

update is a deletion or an insertion, there are two cases.

If the update is a deletion, then according to our deletion algorithm, every point of R

involved in the deletion-type tangent searching procedure must be to the left of t′′
2 . As z is

strictly to the right of t′
2 and thus is strictly to the right of t′′

2 , z cannot be involved in the
procedure during this deletion operation. Further, according to the deletion algorithm,
after the deletion, the tangent point on U(S2) is either still at t′′

2 or strictly to the left of
t′′
2 ; this establishes the assumption.

CGT

3:8 Dynamic Convex Hulls under Window-Sliding Updates

`

t′′1
t′′2

q

qj

S1

S2

z

Figure 3 Illustrating the case where a point qj is inserted for the proof of Lemma 3.

If the update is an insertion, say, inserting a point pj , then according to our insertion
algorithm, we first find the edge qqj of the new hull U(S2) (e.g., see Fig. 3). Let t′′

1 be
current tangent point on U(S1), i.e., t′′

1 t′′
2 is the common tangent.

According to our insertion algorithm, if q is strictly to the right of t′′
2 , or if q = t′′

2 and
t′′
1 t′′

2 and t′′
2qj make a right turn at t′′

2 , then t′′
1 t′′

2 is still the common tangent; in this case,
since t′′

2 is still the tangent point, the assumption still holds. Otherwise, q is t′′
2 or strictly

to the left of t′′
2 , and thus all points of S2 strictly to the right of t′′

2 must be vertically
below qqj . As z is strictly to the right of t′′

2 , z is vertically below qqj , which implies that z

cannot be on the upper hull U(S2). Since only insertions will happen to S2 in the future,
z can never be on the upper hull U(S2) in the future. Because only points on U(S2) can
be involved in the deletion-type tangent searching procedure, z will never be involved in
the procedure in the future.

The above proves that z will never be involved in the deletion-type tangent searching
procedure again in the future. The lemma thus follows. ◀

As a summary, in the special problem setting, we can perform each insertion and deletion
in O(1) amortized time, and after each update, the upper hull U(S) can be output in |U(S)|
time.

4 The general problem setting

In this section, we extend our algorithm given in Section 3 to the general problem setting
without the restriction on the existence of the partition line ℓ. Specifically, we want to
maintain the upper hull U(S) under window-sliding updates, with S = ∅ initially. We will
show that each update can be handled in O(1) amortized time and after each update U(S)
can be output in O(|U(S)|) time. The high-level framework is somewhat similar to the idea
of implementing a queue using two stacks/lists [24]. We will enhance the data structure in
Section 5 so that it can handle other operations on CH(S).

During the course of processing updates, we maintain a vertical line ℓ that will move
rightwards. At any moment, ℓ plays the same role as in the problem setting in Section 3. In
addition, ℓ always contains a point of S. Let S1 be the subset of S that lies to the left of ℓ

(including the point on ℓ), and S2 = S \ S1. For S1, we use the same data structure as before
to maintain U(S1), i.e., a doubly linked list for vertices of U(S1) and a stack associated with
each point of S1, and we call it the list-stack data structure. For S2, as before, we only use a
doubly linked list to store the vertices of U(S2). Note that S2 = ∅ is possible. If S2 ̸= ∅, we
also maintain the common tangent t1t2 of U(S1) and U(S2), with t1 ∈ U(S1) and t2 ∈ U(S2).
We can output the upper hull U(S) in O(|U(S)|) time as before.

Haitao Wang 3:9

For each i ≥ 1, let pi denote the i-th inserted point. Let U denote the universal set of
all points pi that will be inserted. Note that points of U are given online and we only use
U for the reference purpose in our discussion (our algorithm has no information about U

beforehand). We assume that S initially consists of two points p1 and p2. We let ℓ pass
through p1. According to the above definitions, we have S1 = {p1}, S2 = {p2}, t1 = p1,
and t2 = p2. We assume that during the course of processing updates S always has at least
two points, since otherwise we could restart the algorithm from this initial stage. Next, we
discuss how to process updates.

4.1 Deletions

Suppose a point pi is deleted. If pi is not the only point of S1, then we do the same processing
as before in Section 3. We briefly discuss it here. If pi ̸= t1, then we pop pi out of the stack
Q(p) of p, where p = r(pi). In this case, we do not need to update t1t2. Otherwise, we also
need to update t1t2, by the deletion-type tangent searching procedure as before. Lemma 3 is
still applicable here (replacing L ∪ R with U), so the procedure takes O(1) amortized time.

If pi is the only point in S1, then we do the following. We move ℓ to the rightmost point of
S2, and thus, the new set S1 consists of all points in the old set S2 while the new S2 becomes
∅. Next, we build the list-stack data structure for S1 by running Graham’s scan leftwards
from its rightmost point, which takes O(|S1|) time. We call it the left-hull construction
procedure. The following lemma implies that the amortized cost of the procedure is O(1).

▶ Lemma 4. Every point of U is involved in the left-hull construction procedure at most
once in the entire algorithm.

Proof. Consider a point p involved in the procedure. Notice that the procedure will not
happen again before all points of the current set S1 are deleted. Since p is in the current set
S1, p will not be involved in the same procedure again in the future. ◀

4.2 Insertions

Suppose a point pj is inserted. We first update U(S2) using Graham’s scan, and we call it
the right-hull updating procedure. After that, pj becomes the rightmost vertex of the new
U(S2). The procedure takes O(1 + k) time, where k is the number of vertices that were
removed from the old U(S2) (we say that these points are involved in the procedure). By the
standard Graham’s scan, the amortized cost of the procedure is O(1). Note that although
the line ℓ may move rightwards, we can still use the same analysis as the standard Graham’s
scan. Indeed, according to our algorithm for processing deletions discussed above, once ℓ

moves rightwards, all points in S2 will be in the new set S1 and thus will never be involved
in the right-hull updating procedure again in the future.

After U(S2) is updated as above, we check whether the upper tangent t1t2 needs to be
updated, and if yes (in particular, if S2 = ∅ before the insertion), we run an insertion-type
tangent searching procedure to find the new tangent in the same way as before in Section 3.
Lemma 2 still applies (replacing L ∪ R with U), and thus the procedure takes O(1) amortized
time. This finishes the processing of the insertion, whose amortized cost is O(1).

As a summary, in the general problem setting, we can perform each insertion and deletion
in O(1) amortized time, and after each update, the upper hull U(S) can be output in |U(S)|
time.

CGT

3:10 Dynamic Convex Hulls under Window-Sliding Updates

5 Convex hull queries

In this section, we enhance the data structure described in Section 4 so that it can support
O(log h) time convex hull queries as stated in Theorem 1, where h is the number of vertices
of the convex hull CH(S).

The main idea is to use a red-black tree T (or other types of finger search trees [6]) to
store the vertices of U(S) in the left-to-right order with two “fingers” (i.e., two pointers) at
the leftmost and rightmost leaves of T , respectively.2 During the course of the algorithm,
T will be updated with insertions and deletions. We will show that each insertion/deletion
must happen at either the leftmost or the rightmost leaf, which takes O(1) amortized time
with the help of the two fingers [30]. Using T , we can easily answer binary-search-based
queries on CH(S) in O(log h) time each.

Unless otherwise stated, we follow the same notation as those in Section 4. In addition
to the data structure for storing S1 and S2 described in Section 4, we assume that T stores
the vertices of U(S) in the left-to-right order. In what follows, we discuss how to update T

during the algorithm in Section 4.

5.1 Deletions
Consider the deletion of a point pi. As before, depending on whether pi is the only point of
S1, there are two cases.

pi is the only point of S1. If pi is the only point in S1, then according to our algorithm,
we need to perform the left-hull construction procedure on the points {pi+1, pi+2, . . . , pj},
where pj is the rightmost point of S2, after which the above set of points becomes the new
S1. In addition to the algorithm described in Section 4.1, we update T as follows.

Recall that the left-hull construction procedure process vertices of {pi+1, pi+2, . . . , pj}
from right to left. Suppose a vertex pk is being processed (i.e., points pk+1, . . . , pj have
already been processed and U(S) is thus the upper hull of these points; T store the vertices
of U(S)). Then, using Graham’s scan, we check whether the leftmost vertex pg of U(S) needs
to be removed due to pk. If yes, we delete pg from U(S); note that pg must be at the leftmost
leaf of T . We continue this process until the leftmost vertex pg of the current U(S) should
not be removed due to pi. Then, we insert pk into T as the leftmost leaf. Since each insertion
and deletion of T only happens at its leftmost leaf and we already have a finger there, each
such update of T takes O(1) amortized time. Further, due to Lemma 4, the amortized cost
of the left-hull construction is still O(1).

pi is not the only point of S1. Suppose pi is not the only point in S1. Then we preform the
same processing as before in Section 4 and update T accordingly. The details are discussed
below. There are two subcases depending on whether pi = t1.

If pi ̸= t1, recall that our algorithm pops pi out of the stack Q(p), where p = r(pi). In
this case, the common tangent t1t2 does not change. We update T as follows. We first delete
pi from T . Observe that pi must be the leftmost leaf of T . Therefore this deletion costs O(1)
amortized time. Let U(S) refer to the upper hull after pi is deleted. Let S′ denote the set
of vertices of U(S) that were not on U(S) before pi is deleted. It is not difficult to see that

2 In the preliminary version of the paper at WADS 2023, we used interval trees and achieved O(log n)
query time. In this version, following Michael T. Goodrich’s suggestion, we resort to finger search trees
instead, which help reduce the query time to O(log h) and also simplifies the overall algorithm.

Haitao Wang 3:11

points of S′ are exactly the vertices of U(S) strictly to the left of p. Starting from p, these
vertices can be accessed from right to left using the list-stack data structure. We insert these
points into T in the right-to-left order. Observe that each newly inserted point becomes the
leftmost leaf of the new tree (note that before these insertions, p was at the leftmost leaf of
T). Therefore, each such insertion on T takes O(1) amortized time. We refer to this process
as deletion-type tree update procedure; we say that points of S′ are involved in this procedure.
The following lemma implies that the amortized time of this procedure is O(1) and so is the
amortized time of deleting pi.

▶ Lemma 5. Each point can be involved in the deletion-type tree update procedure at most
once in the entire algorithm.

Proof. Let p′ be any point of S′. We argue that p′ cannot be involved in the deletion-type
tree update procedure again in the future. Indeed, p′ was involved in the procedure due
to the deletion of pi. Since pi ̸= t1, p′ must be a point in S1. Right before pi is deleted, p′

was not on the upper hull of S1. After pi is deleted, since no points will be inserted into S1
(before S1 becomes empty), p′ will always be on the upper hull of S1 until it is deleted. This
implies that p′ cannot be involved in the procedure again in the future. ◀

If pi = t1 (see Fig. 2), recall that our algorithm finds the new tangent t′
1t′

2 using the
deletion-type tangent searching procedure as described before. We update T accordingly
as follows. Observe that pi, which is t1, is the leftmost vertex of U(S) and thus is at the
leftmost leaf of T . We delete pi from T , which takes O(1) amortized time. Then, we insert
the points of U(S2) from t2 to t′

2 in this order so that each newly inserted points becomes the
leftmost leaf of T , and thus each insertion takes O(1) amortized time. Note that the above
points can be accessed one by one using their left neighbor pointers, starting from t2. Next,
we insert t′

1 to T at the leftmost leaf and then insert the vertices of U(S1) from t′
1 to its

leftmost vertex (which is pi+1) in this order; these points can be accessed one by one using
the list-stack data structure, starting from t′

1. Again, each newly inserted point becomes
the leftmost leaf of T and thus each such insertion takes O(1) amortized time. Observe that
each of the above newly inserted point pk of T belongs to one of the following three cases:
(1) pk is a vertex of U(S1) strictly between t′

1 and pi+1; (2) pk is is a vertex of U(S2) strictly
between t′

2 and t2; (3) pk is either t′
1 or t′

2. For Case (1), by the same analysis as in Lemma 5,
pk will not be involved in this process again in the future. For Case (2), since pk is involved
in the deletion-type tangent searching procedure (for computing t′

1t′
2), by Lemma 3, pk will

not be involved in this process again in the future. Therefore, the amortized time of this
process is O(1), so is the amortized time of deleting pi.

5.2 Insertions
Suppose we insert a point qj . In addition to our processing as described in Section 4, we
update T as follows. Recall that our algorithm first runs a right-hull updating procedure on
U(S2) by Graham’s scan. During the procedure, if we need to remove a point qk from U(S2)
and qk is to the right of t2 (including the case qk = t2), then qk must be the rightmost vertex
of the current U(S) and thus is the rightmost leaf of T . In this case, we delete qk from T . If
qk = t2, then the rightmost leaf of T becomes t1. Recall that in this case our algorithm will
perform an insertion-type tangent searching procedure to find the new tangent point t′

1 on
U(S1) (see Fig. 1). During the tangent searching procedure, we keep deleting the rightmost
leaf of T until t′

1 is found, after which we insert qj to T as the rightmost leaf. As such, each
deleted point qk of T as above belongs to one of the following three cases: (1) qk is a vertex

CGT

3:12 Dynamic Convex Hulls under Window-Sliding Updates

of the original U(S2) before qj is inserted; (2) qk is a vertex of U(S1) strictly between t′
1 and

t1; (3) qk is either t2 or t1. For Case (1), as discussed in Section 4.2, qk will not be involved
in this procedure again in the future. For Case (2), since qk is involved in the insertion-type
tangent searching procedure, by Lemma 2, qk will not be involved in this procedure again in
the future. Since each of the above update operations on T happens at either the leftmost or
the rightmost leaf of T , the amortized cost of handing the insertion of qj is O(1).

6 Concluding remarks

We proposed a data structure to dynamically maintain the convex hull of a set of points in
the plane under window-sliding updates. Although the updates are quite special, our result
is particularly interesting because each update can be handled in constant amortized time
and binary-search-based queries (both decomposable and non-decomposable) on the convex
hull can be answered in logarithmic time each. In addition, the convex hull itself can be
retrieved in time linear in its size. Also interesting is that our method is quite simple.

In the dual setting, the problem is equivalent to dynamically maintaining the upper
and lower envelopes of a set S∗ of lines in the plane under insertions and deletions. The
window-sliding updates become inserting into S∗ a line whose slope is larger than that of
any line in S∗ and deleting from S∗ the line with the smallest slope. Alternatively, the
lower envelope of S∗ may be considered as a parametric heap [20]. A special but commonly
used type of parametric heaps is kinetic heaps [1, 20]. With our result, we can handle each
window-sliding insertion and deletion on kinetic heaps in O(1) amortized time, and the
“find-min” operation can also be performed in O(1) amortized time, in the same way as those
in [8, 20].

References
1 Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for mobile data.

Journal of Algorithms, 31:1–28, 1999. https://doi.org/10.1006/jagm.1998.0988.
2 Bruno Becker, Paolo G. Franciosa, Stephan Gschwind, Stefano Leonardi, Thomas Ohler, and

Peter Widmayer. Enclosing a set of objects by two minimum area rectangles. Journal of
Algorithms, 21:520–541, 1996. https://doi.org/10.1006/jagm.1996.0057.

3 Bruno Becker, Paolo G. Franciosa, Stephan Gschwind, Thomas Ohler, Gerald Thiem, and
Peter Widmayer. An optimal algorithm for approximating a set of rectangles by two minimum
area rectangles. In Workshop on Computational Geometry, pages 13–25, 1991. https:
//doi.org/10.1007/3-540-54891-2_2.

4 Jon L. Bentley. Decomposable searching problems. Information Processing Letters, 8:244–251,
1979. https://doi.org/10.1016/0020-0190(79)90117-0.

5 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
Geometry — Algorithms and Applications. Springer-Verlag, Berlin, 3rd edition, 2008.

6 Gerth Stølting Brodal. Finger search trees. In Handbook of Data Structures and Applications,
Dinesh P. Mehta and Sartaj Sahni (eds.). Chapman and Hall/CRC, 2004. https://cs.au.
dk/~gerth/papers/finger05.pdf.

7 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull with optimal query time
and O(log n · log log n) update time. In Proceedings of the 7th Scandinavian Workshop on
Algorithm Theory (SWAT), pages 57–70, 2000. https://doi.org/10.1007/3-540-44985-X_7.

8 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. In Proceedings of the
43rd IEEE Symposium on Foundations of Computer Science (FOCS), pages 617–626, 2002.
https://doi.org/10.1109/SFCS.2002.1181985.

9 Norbert Bus and Lilian Buzer. Dynamic convex hull for simple polygonal chains in constant
amortized time per update. In Proceedings of the 31st European Workshop on Computational

https://doi.org/10.1006/jagm.1998.0988
https://doi.org/10.1006/jagm.1996.0057
https://doi.org/10.1007/3-540-54891-2_2
https://doi.org/10.1007/3-540-54891-2_2
https://doi.org/10.1016/0020-0190(79)90117-0
https://cs.au.dk/~gerth/papers/finger05.pdf
https://cs.au.dk/~gerth/papers/finger05.pdf
https://doi.org/10.1007/3-540-44985-X_7
https://doi.org/10.1109/SFCS.2002.1181985

Haitao Wang 3:13

Geometry (EuroCG), 2015. https://perso.esiee.fr/~busn/publications/2015_eurocg_
dynamicConvexHull/eurocg2015_dynamicHull.pdf.

10 Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimen-
sions. Discrete and Computational Geometry, 16:361–368, 1996. https://doi.org/10.1007/
BF02712873.

11 Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmaic amortized
time. Journal of the ACM, 48:1–12, 2001. https://doi.org/10.1145/363647.363652.

12 Timothy M. Chan. Three problems about dynamic convex hulls. International Journal of
Computational Geometry and Applications, 22:341–364, 2012. https://doi.org/10.1142/
S0218195912600096.

13 Timothy M. Chan, John Hershberger, and Simon Pratt. Two approaches to building time-
windowed geometric data structures. Algorithmica, 81:3519–3533, 2019. https://doi.org/10.
1007/s00453-019-00588-3.

14 Joseph Friedman, John Hershberger, and Jack Snoeyink. Efficiently planning compliant motion
in the plane. SIAM Journal on Computing, 25:562–599, 1996. https://doi.org/10.1137/
S0097539794263191.

15 Ronald L. Graham. An efficient algorithm for determining the convex hull of a finite planar set.
Information Processing Letters, 1:132–133, 1972. https://doi.org/10.1016/0020-0190(78)
90041-8.

16 Leonidas J. Guibas, John Hershberger, and Jack Snoeyink. Compact interval trees: A data
structure for convex hulls. International Journal of Computational Geometry and Applications,
1(1):1–22, 1991. https://doi.org/10.1142/S0218195991000025.

17 John Hershberger and Jack Snoeyink. Cartographic line simplification and polygon CSG
formula in O(n log∗ n) time. Computational Geometry: Theory and Applications, 11:175–185,
1998. https://doi.org/10.1016/S0925-7721(98)00027-3.

18 John Hershberger and Subhash Suri. Applications of a semi-dynamic convex hull algorithm.
BIT, 32:249–267, 1992. https://doi.org/10.1007/BF01994880.

19 John Hershberger and Subhash Suri. Offline maintenance of planar configurations. Journal of
Algorithms, 21:453–475, 1996. https://doi.org/10.1006/jagm.1996.0054.

20 Haim Kaplan, Robert E. Tarjan, and Kostas Tsioutsiouliklis. Faster kinetic heaps and their use
in broadcast scheduling. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 836–844, 2001. https://doi.org/10.5555/365411.365793.

21 David G. Kirkpatrick and Raimund Seidel. The ultimate planar convex hull algorithm? SIAM
Journal on Computing, 15:287–299, 1986. https://doi.org/10.1137/0215021.

22 Avraham A. Melkman. On-line construction of the convex hull of a simple polygon. Information
Processing Letters, 25:11–12, 1987. https://doi.org/10.1016/0020-0190(87)90086-X.

23 Ketan Mulmuley. Randomized multidimensional search trees: Lazy balancing and dynamic
shuffling. In Proceedings of the 32nd Annual Symposium of Foundations of Computer Science
(FOCS), pages 180–196, 1991. https://doi.org/10.1145/109648.109662.

24 Chris Okasaki. Simple and efficient purely functional queues and deques. Journal of Functional
Programming, 5:583–592, 1995. https://doi.org/10.1017/S0956796800001489.

25 Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane.
Journal of Computer and System Sciences, 23(2):166–204, 1981. https://doi.org/10.1016/
0022-0000(81)90012-X.

26 Franco P. Preparata. An optimal real-time algorithm for planar convex hulls. Communications
of the ACM, 22:402–405, 1979. https://doi.org/10.1145/359131.359132.

27 Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York, 1985.

28 Franco P. Preparata and Jeffrey S. Vitter. A simplified technique for hidden-line elimination
in terrains. International Journal of Computational Geometry and Applications,, 3:167–181,
1993. https://doi.org/10.1142/S0218195993000117.

CGT

https://perso.esiee.fr/~busn/publications/2015_eurocg_dynamicConvexHull/eurocg2015_dynamicHull.pdf
https://perso.esiee.fr/~busn/publications/2015_eurocg_dynamicConvexHull/eurocg2015_dynamicHull.pdf
https://doi.org/10.1007/BF02712873
https://doi.org/10.1007/BF02712873
https://doi.org/10.1145/363647.363652
https://doi.org/10.1142/S0218195912600096
https://doi.org/10.1142/S0218195912600096
https://doi.org/10.1007/s00453-019-00588-3
https://doi.org/10.1007/s00453-019-00588-3
https://doi.org/10.1137/S0097539794263191
https://doi.org/10.1137/S0097539794263191
https://doi.org/10.1016/0020-0190(78)90041-8
https://doi.org/10.1016/0020-0190(78)90041-8
https://doi.org/10.1142/S0218195991000025
https://doi.org/10.1016/S0925-7721(98)00027-3
https://doi.org/10.1007/BF01994880
https://doi.org/10.1006/jagm.1996.0054
https://doi.org/10.5555/365411.365793
https://doi.org/10.1137/0215021
https://doi.org/10.1016/0020-0190(87)90086-X
https://doi.org/10.1145/109648.109662
https://doi.org/10.1017/S0956796800001489
https://doi.org/10.1016/0022-0000(81)90012-X
https://doi.org/10.1016/0022-0000(81)90012-X
https://doi.org/10.1145/359131.359132
https://doi.org/10.1142/S0218195993000117

3:14 Dynamic Convex Hulls under Window-Sliding Updates

29 Otfried Schwarzkopf. Dynamic maintenance of geometric structures made easy. In Proceedings
of the 32nd Annual Symposium of Foundations of Computer Science (FOCS), pages 197–206,
1991. https://doi.org/10.1109/SFCS.1991.185369.

30 Robert E. Tarjan and Christopher J. Van Wyk. An o(n log log n) algorithm for triangulating a
simple polygon. SIAM Journal on Computing, 17:143–178, 1988. https://doi.org/10.1137/
0217010.

31 Haitao Wang. Algorithms for subpath convex hull queries and ray-shooting among segments.
In Proceedings of the 36th International Symposium on Computational Geometry (SoCG),
pages 69:1–69:14, 2020. https://doi.org/10.4230/LIPIcs.SoCG.2020.69.

https://doi.org/10.1109/SFCS.1991.185369
https://doi.org/10.1137/0217010
https://doi.org/10.1137/0217010
https://doi.org/10.4230/LIPIcs.SoCG.2020.69

	1 Introduction
	1.1 Our results

	2 Preliminaries
	3 A special problem setting with a partition line
	3.1 Initialization
	3.2 Insertions
	3.3 Deletions

	4 The general problem setting
	4.1 Deletions
	4.2 Insertions

	5 Convex hull queries
	5.1 Deletions
	5.2 Insertions

	6 Concluding remarks

