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—— Abstract

We study three orientation-based shape descriptors on a set of continuously moving points: the first

principal component, the smallest oriented bounding box and the thinnest strip. Each of these shape
descriptors essentially defines a cost capturing the quality of the descriptor and uses the orientation
that minimizes the cost. This optimal orientation may be very unstable as the points are moving,
which is undesirable in many practical scenarios. If we bound the speed with which the orientation
of the descriptor may change, this may lower the quality of the resulting shape descriptor. In this
paper we study the trade-off between stability and quality of these shape descriptors.

We first show that there is no stateless algorithm, an algorithm that keeps no state over time,
that both approximates the minimum cost of a shape descriptor and achieves continuous motion for
the shape descriptor. On the other hand, if we can use the previous state of the shape descriptor
to compute the new state, we can define “chasing” algorithms that attempt to follow the optimal
orientation with bounded speed. We show that, under mild conditions, chasing algorithms with
sufficient bounded speed approximate the optimal cost at all times for oriented bounding boxes and
strips. The analysis of such chasing algorithms is challenging and has received little attention in
literature, hence we believe that our methods used in this analysis are of independent interest.
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1 Introduction

Given the amount of data that is widely available nowadays, algorithms play an important
part in analyzing this data and finding useful patterns in it. For many applications it is
important that an algorithm is stable: small changes in the input lead to small changes in
the output. These applications include the analysis or visualization of time-varying data. We
can effectively visualize how a large set of moving points evolves, for example, by drawing a
glyph capturing the direction of movement (e.g. an arrow or line segment) for a few subsets
of the points, which gives a clear and comprehensible overview of the data. We can also
summarize a set of moving points in a single dimension by projecting all the points to their
first principal component, as used in the visualization technique MotionRugs [31]. However,
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if the orientation of the glyphs or first principal component changes erratically even with
small changes in the data, it becomes hard to see how the data changes over time. In other
words, unstable algorithms may result in large visual changes even for small data changes,
severely limiting the efficacy of such methods for visualization of time-varying data. Thus, it
is important to develop stable algorithms which deal with these discrete changes of the input
in an elegant way. As a result, stable algorithms can efficiently work with the available data
without losing their effectiveness over time.

The applications mentioned above all use some type of shape descriptor. Shape descriptors
are simplified representations of more complex shapes. They are used, for example, as
summaries of a large collection of data, where we are not interested in all the details, but
simply want to have an overview of the most important features. Shape descriptors play an
important role in many fields that perform shape analysis, such as computer vision (shape
recognition) [7, 34], computer graphics (bounding boxes for broad-phase collision detection)
[20, 29], medical imaging (diagnosis or surgical planning) [10, 35], and machine learning
(shape classification) [32, 33]. When computing such shape descriptors, we generally want to
optimize how closely the descriptor resembles the input. In this paper we are interested in
shape descriptors that specifically capture the orientation of the data — in our case a set of
moving points. For example, one could consider a short line segment with small distance to
the point set, a line segment connecting the focal points of an ellipse enclosing the points, or
any other descriptor that captures the direction in which the point set is stretched.

The three shape descriptors we study in this paper are the first principal component (PC),
the smallest (area) oriented bounding boxr (OBB) and the thinnest covering strip (STRIP). As
we will see below, these three shape descriptors are orientation-based, that is, the optimization
function for such a shape descriptor, in an orientation « on a point set P, is easily expressed
(only) in terms of a and P. The orientation aopy of an optimal descriptor captures the
orientation of the described point set P. These three shape descriptors are also commonly
used in applications (such as the orientation glyphs or MotionRugs) where we always want
to output a reasonable orientation, even when this orientation is not very pronounced. These
three shape descriptors are unfortunately also unstable: small changes in the point set they
represent can result in discrete “flips” in their orientation (see Figure 1). We analyze the
stability of these shape descriptors and develop stable variations on them.

Problem description. The main goal of this paper is to formally analyze the trade-off
between quality and stability for orientation-based shape descriptors. Our input consists of a
set of n moving points P = P(t) = {p1(t),...,pn(t)} in two dimensions, where each p;(t) is a
continuous function p;: [0, 7] — R2. We assume that, at each time ¢, not all the points are at
the same position. The output consists of an orientation o = «(t) of the shape descriptor for

Figure 1 A flip in orientation for PC, OBB and STRIP. Small changes in the positions of the points
make one of the orientations optimal over the other.
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every point in time ¢ € [0, T], which need not match the optimal orientation due to stability
constraints. To quantify the quality of any output orientation, we define each of the three
shape descriptors IT as minimizers of an optimization function fr(a, P). Let £(«) be the set
of lines with orientation «, and let d(L,p) be the distance between a point p and a line L.
Furthermore, let the extent of P along a unit vector a be wq(P) = max, ,ep(p — q) - @,
where - denotes a dot product, and let a be a vector orthogonal to a. We define the
orientation of PC, OBB or STRIP as the orientation « that minimizes the following functions:

Principal component: fuc(a, P) = mingez(a) 2 ,e p AL, p)°
Oriented bounding box: fops(a, P) = we(P)wys (P)
Covering strip: fsrpp(a, P) = wq1 (P)

Intuitively, PC can be represented by a line that minimizes the sum of squared errors from the
points in P to that line — this line is then the direction of largest variation. OBB and STRIP
intuitively capture a bounding rectangle of minimum area and a bounding strip of minimum
width. Though various other options for these functions are possible, we believe the functions
above naturally fit to the shape descriptors, and most importantly these functions quantify
the quality of a shape descriptor for any orientation «. This allows us to also consider shape
descriptors of suboptimal quality, which do not fully minimize the optimization function.
This in turn enables us to make a trade-off between quality and stability. When computing
a shape descriptor, we typically compute more than just an orientation, such as the exact
position and dimensions of the descriptor. However, the stability is mostly affected by the
optimal orientation: if the (not necessarily optimal) orientation changes continuously and
the points move continuously, then the shape descriptor changes continuously as well. We
therefore ignore other aspects of the shape descriptors to analyze their stability, and assume
that these aspects are chosen optimally for the given orientation without any cost with regard
to the stability.

Note that an orientation a(t) is an element of the real projective line RP!, but we
typically represent «(t) by a unit vector in R? and implicitly identify opposite vectors, which
is equivalent. Furthermore, we assume that the output «(¢) is computed for all real values
t € [0,T). This assumption simplifies our analysis. In practice, algorithms can be executed
only finitely often, once per some defined time step. Introducing such discreteness into the
problem may lead to interesting effects, but it is not the focus of this paper. Furthermore,
for sufficiently small time steps, the continuous analysis will provide a good approximation.

Kinetic algorithms. Algorithms for kinetic (moving) input can adhere to different models,
which may influence the results of the stability analysis. Let A be an algorithm mapping

input to output, and I(t) the input depending on time ¢. We distinguish the following models.

Stateless algorithms: The output depends only on the input I(t) at a particular point
in time, and no other information of earlier times. This in particular means that if
I(t1) = I(t2), then A produces the same output at time ¢; and at time ts.

State-aware algorithms: The algorithm .4 has access not only to the input I(¢) at a particular
time, but also maintains a state S (possibly the entire history) over time; in practice this
is typically the output at the previous point in time. Thus, even if I(t1) = I(t2), A may
produce different results at time t; and t; if the states at those times are different.

Clairvoyant algorithms: The algorithm A has access to the complete function I(¢) and can
adapt to future inputs. Thus, the complete output over time can be computed offline.

1:3
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In this paper we consider both stateless and state-aware algorithms. A stateless algorithm
can be stable only if it defines a mapping from input to output that is naturally continuous.
On the other hand, a state-aware algorithm can easily enforce continuity by using its state
to keep track of earlier output. We call such a state-aware algorithm a chasing algorithm:

Chasing algorithms: The algorithm A maintains the most recent output (in our case a shape
descriptor) as the state S and uses only the input at the current time I(¢) to find a new
optimal solution OPT. The algorithm then moves the solution in S towards OPT at the
maximum allowed speed (which depends on the required stability). The resulting solution
is the output for the current time ¢ and is subsequently stored in S.

The output at time ¢ might not coincide with OPT, as the solution in S may have been
too different from OPT and the maximum allowed speed did not allow S to catch up to
OPT: the output of our algorithm chases after the optimal solution. The challenge lies
in bounding the ratio between the quality of the solutions used by the algorithm and the
(unstable) optimal quality. Since we do not consider discrete time steps in this paper, we
simply assume that a chasing algorithm maintains a solution over time, and it can choose
the rate of change of the solution (e.g., rotation speed/direction) at every point in time.

Stability analysis. Classical considerations to assess algorithms include quality (e.g., opti-
mality, approximation ratio) and efficiency (in e.g. time or memory). These aspects consider
the relation between input and output; a worst-case analysis can typically consider a single
input. Stability instead considers how outputs relate between related inputs, and a worst-case
scenario is a sequence of inputs. This requires a different analysis approach: we use the
framework by Meulemans et al. [22]. Below, we restrict their definitions to our setting.

Let A be an algorithm that takes a point set as input and computes an orientation
(where the state S for state-aware algorithms is implicit). For topological stability, we aim to
analyze how well such an algorithm can perform with respect to the (unstable) optimum, if
we restrict its output to move continuously but potentially arbitrarily fast for continuously
moving input. The notion of continuity is captured by choosing an appropriate topology for
the input space and the output space. This is straightforward: the input space is R?"® and
the output space is topologically equivalent to the unit circle which we denote here by O.
We choose these topologies for our analysis. The topological stability ratio of shape descriptor
IT is then defined as

B fru(P(t), A(P(t)))
prs(Il) = inf S o minyeo fr(P(t),7)

where the supremum is taken over all continuously moving point sets P, and the infimum is
taken over all algorithms A for which A(P(t)) is continuous. Furthermore, in the denominator
we minimize over all orientations v to find an optimal shape descriptor II (PC, OBB, or STRIP).

The K -Lipschitz stability ratio prs(I1, K) is defined almost exactly the same: the only
difference is that we now take the infimum over all algorithms A for which A(P(¢)) is
K-Lipschitz, that is, the output moves continuously with speed bounded by K. We measure
the output in radians, and hence the output orientation or angle may change with a speed of
at most K radians per time unit. Lipschitz stability requires bounded input speed and scale
invariance [22]. Here, we assume that points move with at most unit speed and that the
diameter of P(t) is at least 1 at all times. Note that we can always appropriately scale to
meet these assumptions, if not all the points coincide in a single location. The unit diameter
assumption is only mild, if points represent actual objects such as fish [31] which have a
certain size and cannot occupy the same physical space.
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Related work. Shape descriptors are a wide topic, studied in various subfields of computer
science. Here, we focus on results related to PC, OBB or STRIP, and results on stability.

The three oriented shape descriptors considered in this paper are related to each other,
yet slightly different. The ratio between the volume of the bounding box using the orientation
of PC and the minimal-volume bounding box is unbounded [13]. Similar to PC, other
fitness measures have been considered with respect to oriented lines, such as the sum of
distances or vertical distances [11]. Computing OBB for static point sets is a classic problem
in computational geometry. In two dimensions, one side of the optimal box aligns with
a side of the convex hull and it can be computed in linear time after finding the convex
hull [17, 27]; a similar property holds in three dimensions, allowing a cubic-time algorithm
[24]. The relevance of bounding boxes in 3D as a component of other algorithms also led to
efficient approximation algorithms [5]. Bounding boxes find applications in tree structures
for spatial indexing [6, 19, 25, 26] and in speeding up collision detection and ray-tracing
techniques [4, 29, 18]. The optimal STRIP can be computed using the same techniques as OBB
in two dimensions [17, 27]. Agarwal et al. [2] provide an O(n 4 1/e9(M)-time approximation
algorithm via e-kernels for various measures of a point set, including OBB and STRIP. In terms
of kinetic maintenance of these shape descriptors, OBB and STRIP can both be maintained
by efficient and compact kinetic data structures [1]. These data structures process O(n?*¢)
events under algebraic motion of the points, while both shape descriptors may undergo (n?)
combinatorial changes even for linear motion of the points. However, a (1 + ¢)-approximation
of 0BB and a (2 + ¢)-approximation of STRIP can be maintained while processing a number
of events that depends only on ¢ [3].

The stability of kinetic 1-center problems has been studied by Bereg et al. [8]. They
provide some results on the trade-off between solution quality and speed using chasing
algorithms. Their analysis is significantly different from ours, as the structures they chase
inherently move continuously: coping with discrete flips is then not necessary. Subsequently,
Durocher and Kirkpatrick [16] studied this trade-off for the 1-median problem, which does
exhibit discrete flips (even when the 1-median is not restricted to input positions). Durocher
and Kirkpatrick [14, 15] also studied the stability of the kinetic 2-center problem; their
approach allows a trade-off between solution quality and the speed at which a solution
changes. De Berg et al. [12] show similar results in the black-box kinetic-data-structures
model. Letscher et al. [21] show that the medial axis for a union of disks changes continuously
under certain conditions or if it is pruned appropriately. Meulemans et al. [22] introduced a
framework for analyzing stability and apply it to Euclidean minimum spanning trees on a
set of moving points. They show bounded topological stability ratios for various topology
definitions on the space of spanning trees, and that the Lipschitz stability ratio is at most
linear, but also at least linear if the allowed speed for the changes in the tree is too low. Van
der Hoog et al. [30] study the topological stability of the k-center problem, showing upper
and lower bounds on the stability ratio for various measures. They also provide a clairvoyant
algorithm to determine the best ratio attainable for a given set of moving points.

Results and organization. In Section 2 we prove that there exists no stateless algorithm
for any of the shape descriptors that is both topologically stable and achieves a bounded
approximation ratio for the quality of the optimal shape descriptor. We then consider
state-aware algorithms and analyze the topological stability for each of the shape descriptors
in Section 3. In Section 4 we analyze the Lipschitz stability of chasing algorithms for all
three shape descriptors. We show that chasing algorithms with sufficient speed can achieve
a constant approximation ratio for OBB and STRIP, if we indeed assume unit speed for

1:5
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the points and that the diameter of the point set is always at least 1. To the best of our
knowledge, this is the first time a chasing algorithm has been analyzed, which deals with
discrete changes. We believe that the new methods that we developed for this challenging
stability analysis are of independent interest, and may be applied to the analysis of other
chasing algorithms. We conclude the paper in Section 6.

2 Stateless algorithms

We prove that stateless algorithms cannot achieve bounded topological stability ratio for any
of the three shape descriptors. This readily implies an unbounded K-Lipschitz stability ratio
for any K. The argument is entirely topological. A stateless topologically stable algorithm
(with output behaving continuously) is a continuous map from the input space to the output
space. Important for the theorem below is that, if all points of set P lie on a single line with
orientation «, then fr(v, P) = 0 iff v = «, for each considered shape descriptor II. Intuitively
the proof works as follows: We construct a set of inputs that is topologically equivalent to a
disk in the input space. All inputs P at the boundary of this disk consist of n points that lie
on a single line with orientation ¢, and hence the ratio between fri(«, P) and fri(v, P), with
v # «, will be unbounded. We show that there is no function that is both continuous, and
maps the inputs at the boundary of the topological disk to the correct orientations.

» Theorem 1. For stateless algorithms prs(PC) = prs(OBB) = prs(STRIP) = oo if the point
set contains at least three points.

Proof. The idea is to construct a continuous map j: D? — R?” on the two-dimensional
closed disk D?, such that the image of j is a vector consisting of coordinates of valid point
sets in R? (which do not have all the points at the same position), and that the image of 9D?
under j forces the orientation of the shape descriptor on those points. We parameterize D?
using polar coordinates (r,¢) for 0 < ¢ < 2w and 0 < r < 1. We first construct a map j' as
follows, and we interpret each element in its codomain as a sequence of z- and y-coordinate
pairs corresponding to n points in R? (see Figure 2).

r ™m

2 2
j'(r,¢) = ( cos¢,£singf>7 lcos¢,—rsin¢, e cos¢,msin¢>
n n n n n n

When r # 0, the point set corresponding to j' is spread out over a line, whose orientation
depends on ¢ (see Figure 2b). The orientation of the shape descriptor is then always
forced (otherwise the approximation ratio is oco). However, j/(0,¢) is not a valid point
set, since it places all the points at the origin. Now let P* be a set of n points in R2,
containing at least three non-collinear points. Interpreting P* as a vector in R?", we
define j(r,¢) = j'(r,¢) + (1 — r)P*. By the choice of P*, j(r,¢) is always a valid point
set. Furthermore, the orientation of the shape descriptors is still fixed for point sets
J(1,¢) = j'(1,¢), namely & = ¢ (mod 7); in that orientation the three optimization functions
will evaluate to zero and in any other orientation they evaluate to a non-zero value. As a
result, any stateless algorithm with an approximation ratio p < co defines, along with j, a
continuous mapping h from D? to circle O (as the quotient space [0, 7]/{0, 7} for PC and
sTrIP, and [0, 7]/{0, 5} for 0BB) where 0D? is mapped multiple times around O, i.e., a
double cover of O for PC and STRIP, and a quadruple cover for OBB. The continuous mapping
h is simply the output of the stateless algorithm on j. We claim that the mapping h from
D? to O cannot exist.

For the sake of contradiction, assume that such a map h exists. Let f,g: O — D? be
continuous functions. Function f maps every point € O to the boundary dD? C D? such



W. Meulemans, K. Verbeek, and J. Wulms

(a) (b) (c)

Figure 2 Illustrations for the proof of Theorem 1: (a) The closed disk D? and elements j'(0, 7/4),
§'(1/2,7/4), and j'(1,7/4) as colored points in D?, and (b) the corresponding color-coded point
sets in R2. Each point set consists of n = 3 points; some points coincide, for example the yellow
points. For j'(1,7/4) we show the width-0 STRIP in orientation 7/2 as well as a (wider) strip in
another orientation. (¢) The homotopic mappings f and g, and the mapping h that cannot exist.

that the mapping covers the whole boundary once, while ¢ maps all € O to a single point
y € D? (see Figure 2c). We can continuously shrink the image of f to a single point in D?, in
particular the image of g; hence f and g are homotopic. We now consider ho f and ho g and
use the degree of these mappings (as first defined in [9]) to show that h cannot exist. Since f
maps O to the boundary D? C D?, and h maps 9D? to a double or quadruple cover of O,
we know that the degree of h o f is respectively two or four. On the other hand, g maps all
of O to a single point in D?, therefore h o g has degree 0. By the Hopf theorem [23] ho f and

h o g cannot be homotopic, as they can be homotopic if and only if their degrees are equal.

However, h o f and h o g must be homotopic, since homotopy equivalence is compatible with
function composition and f is homotopic to g. This contradiction implies that h cannot
exist. Thus prg is oo for stateless algorithms. |

3 Topological stability

In this section we turn to state-aware algorithms, and we analyze the topological stability of
the shape descriptors. Specifically, we prove the following tight bounds.

» Theorem 2. The topological stability ratios of the shape descriptors are:
prs(PC) =1,
prs(0BB) = §,
prs(STRIP) = /2.

To prove an upper bound on prg, we need an algorithm that produces an output that changes
continuously, but may change arbitrarily fast. Our algorithm works as follows. Whenever an
optimal solution undergoes a discrete change at time ¢, our algorithm moves continuously

between the solution before and after the discrete change in the interval T' = [t — €, + €.

When analyzing the topological stability ratio, we consider all suboptimal intermediate
solutions in 7. However, in our proofs we may assume that this change happens at time ¢,
since the definition of ppg asks for an infimum over all algorithms, which may use different e:
The limit of T when e approaches zero shrinks to a single point in time. It is therefore
sufficient to consider changing the output at time ¢ to find an upper bound on prg, since
our output is suboptimal only during this change. On the other hand, to prove a lower
bound on prs, we must construct a full time-varying point set such that the corresponding
approximation ratio must occur at some point in time during this motion, regardless of which
algorithm is used. Note that a lower bound on the topological stability ratio is immediately
also a lower bound on the K-Lipschitz stability ratio for any value of K.

CGT
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Figure 3 Moving points causing a flip between the first principal component (red) and second
principal component (blue).

» Lemma 3. prg(Pc) =1

Proof. Consider a time ¢ where the first principal component flips between two orientations,
represented by unit vectors ¥ and U2 (see Figure 3). The first principal component is the
orientation of the line that minimizes the sum of squared distances between the points and
the line, as described in Section 1. It can be computed by centering the point set at the mean
of the coordinates, computing the covariance matrix of the resulting point coordinates, and
extracting the eigenvector of this matrix with the largest eigenvalue. Since eigenvalues change
continuously if the data changes continuously [28, Theorem 3.9.1], both ¢} and U2 must have
some eigenvalue \* at time ¢. But that means that every interpolated vector ¥ = (1—u)v) +uts
also has eigenvalue A\*, since Cv = (1 — u)C0; + uC0s = (1 — w)A*U) + ul*0y = N\*0. As a
result, fpo(¥) = foc(v1), and we can continuously change orientation from ¥ to vy without
decreasing the quality of the shape descriptor. <

» Lemma 4. prg(0BB) < 2

Proof. Consider a time ¢ at which two distinct oriented bounding boxes A and B have
minimum area; both are assumed to have the smallest area 1 without loss of generality, as
the problem at hand is invariant under scaling. At this time ¢ we continuously change the
orientation of the box between that of A and B while making sure that the box still contains
all the points (see Figure 4). The goal is to compute the maximal size of the intermediate
box in the worst case. Note that we may rotate either clockwise or counterclockwise; we
always choose the direction that minimizes this maximal intermediate size.

Let a and b denote the length of the major axes of A and B respectively. Let angle «
denote the smallest angle between the orientations of the major axes. Note that o € {0,7/2}
leads to A and B being identical, and that our problem is invariant under rotation, reflection
and translation. We thus assume without loss of generality:

b>a>1;

O<a<m/2

B is centered at the origin, and A at (dz, dy);

the major axis of A is horizontal;

« describes a counterclockwise angle from the major axis of A to the major axis of B.

The points P must all be contained in the intersection of A and B, for otherwise A and
B would not be bounding boxes. Furthermore, no side of A may be completely outside B or
vice versa, for otherwise one of the boxes could be made smaller. Thus, all sides intersect,
and we are interested in four of these intersections Iy,...,I; (see Figure 4). Specifically,
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we want to use the intersections that allow us to derive a valid upper bound on the size
of the bounding box during rotation. Since the intersections depend on the direction of
rotation, we choose the intersections that allow us to rotate from A to B in counterclockwise
direction. The coordinates of the intersections can easily be computed (see Figure 4). For
example, for Iy = (x1,y1) we solve for the following two equations: z; = dx — a/2 and

21 cosa + yy sina = —b/2. The resulting coordinates of all intersections are:
I, = ( + dLL' b—(agziwicosa)
_ —(a+2dz) cos av
2 - ( 1 2‘5111(1 1)
3:(( 127 )g?§3+2{)sina777+dy)
4:((7+d )23?272bsma’2a+dy>

Now consider an intermediate box C' with angle 8 < « with respect to box A. Note that
C contains the intersection of A and B as long as it contains Iy, ...,1;. We can define two
vectors Vi = Iy — I1 and Vo = 14 — I3, which we project to lines at angle 6 and 6 + % to
obtain the lengths of the sides of C'. Note that V4 and V5 depend only on a, b and «, but
not on dx and dy. Thus, using V; and V5 we can obtain a formula for the area of C, which
we call C.

Cla,b,a,0) =V - (cosb,sinf) x V- (—sin b, cos b))
_ (bsin(a —0) +asinf) x (asin(a — 0) 4 bsin )

absin® a
We are now interested in the maximum of C. We start by finding the partial derivative of
C with respect to 6:
C  (a*+ b* — 2abcos a) sin(o — 26)
90 absin? o
First observe that g—g =0 if and only if 8 = /2 in the chosen domain, which implies that
we can set § = /2. Using double-angle formulas, we may simplify C in this setting.

(a +b)?sin?(a/2)
absin? o

(a +b)?sin?(a/2)
ab(2sin(a/2) cos(a/2))?
B (a+b)?

2ab(2 cos?(a/2))
B (a+0b)?
~ 2ab(1 + cos(a))

Cla,b,a,0/2) =

LB B Boq
]2 ]2 C 0

IIT = 0‘\ A h A I —" 01A
3
\/(cos a, sin @) \/ (cosf,sin @)

Figure 4 Construction of closed formula for area of intermediate solution C.
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We now split the domain of « into (0, %] and (%, 5), and prove both cases separately.

In the first case, when o € (0, 7], let ¢ > 1 be such that b = ca (since b > a). As b is at
most the length of the diagonal of A, we get that ¢ < /a2 + (1/a)2/a = /1 +1/a* < V2
(since @ > 1). The resulting formula is C(a,ca, o, /2) = % This function is
maximized when ¢ and « are maximized. We thus set « = 7/4 and ¢ = V2 to obtain that
C(1,v2,m/4,7/8) < 3 + 2v/2 < 2 and thus this case meets the bound claimed.

What remains is to prove the case where a € (§, §). It might now be beneficial to rotate
A clockwise instead of counterclockwise, to align the minor axis of A with the major axis
of B: this clockwise rotation may result in smaller intermediate solutions C. Since C can
only deal with counterclockwise rotation, we have to use different parameters to deal with
the described situation. To simulate the clockwise rotation, we use C(1/a,b,7/2 — «, 8); this
reflects the whole setup over direction 7/4 effectively considering the minor axis as the major
axis instead. Note that we did not use the assumption that a > 1 anywhere above, until
within the other case where o < 7/4. Note that g—g = 0 depends on the parameters we fill in,
hence we can set § = (7/2 — «)/2 = w/4 — /2 to find a maximum in this case.

For all possible values of a, b and «, we need to find the area of the largest intermediate
box C'. Since we can choose whether we rotate clockwise or counterclockwise, this area is the
minimum of C(a, b, o, a/2) and C(1/a,b,7/2 — a, /4 — a/2). We first simplify the latter.

(z+b)?
21b(1 + cos(n/2 — o))
a?(L +b)?
- 2ab(1 + sin(a))
(1 +ab)?
= Sab(1 + sin(a)

C(1/a,b,m/2 —a,m/4—a/2) =

To find the maximum of the function, we can use a mathematical program that looks for
the values of a,b and « that comply to a set of constraints and maximize a target function.
All constraints come from the assumptions, but we add a final constraint similar to what we
did in the o € (0, ] case. To ensure that all 4 intersection points exist, the projection of the
diagonal of A to the major axis of B should be larger than b. Hence we add the constraint
b<acosa+ % sin . The mathematical program now looks as follows:

maximize min (a+b)° (1+ab)*
2ab(1 + cos(a))” 2ab(1 + sin(«))
. 1.
subject to b<acosa+ —sina
a

/A <a<m/2
1<a<b

Using mathematical software, for example Mathematica 11.2, we can verify that the area
is at most %. |
» Lemma 5. prs(0BB) > 2
Proof. Refer to Figure 5 for illustration. Consider a point set P with four static points
p1 = (0,0), p2 = (2,1), ps = (0.75,1) and py = (1.25,0), and point ps moving linearly
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Figure 5 Moving points forcing a flip from bounding box A to B. Rotating continuously, a
bounding box at least as big as C' or C’ is required.

from (2,0) to (1.2,1.6). The static points allow two minimal bounding boxes of area 2 and
aspect ratio 2: one with orientation 0 (box A) and one with orientation 2 arctan(%) ~ 53.13
degrees (box B). As ps is always in A or B, one of these boxes is always optimal. Initially,

only A contains ps and in the end only box B does. The angles arctan(3) (box C) and
5 .

7/4 — arctan(3) (box C’) give an intermediate box of size 2.5 = 2 - 2 on the static points.

1
Box C is encountered on a counterclockwise rotation from A to B, and C’ on a clockwise

rotation. Neither C', C’, nor any box rotated more towards B contains the initial location of
ps. Similarly, neither C, C’, nor any box rotated towards A contains the final location.

To derive a contradiction, assume a continuously moving OBB exists that achieves a ratio
strictly less that %. This ratio implies that initially the OBB orientation is clockwise between
C and ', and at the end of the motion it is not. However, as the assumed OBB moves
continuously through O, it must at some point have been in the orientation of C' or C’. But
this implies a ratio of g, contradicting our assumption and proving the lower bound. |

» Lemma 6. prg(STRIP) < /2

Proof. Consider a time ¢ at which there are two thinnest strips A and B of width 1 with
different orientations. All the points must be contained in the diamond-shaped intersection
D of A and B (see Figure 6). If we continuously rotate a strip C' from A to B, then at some
point the width of C' must be at least the length of one of the diagonals of D. To maximize
the length of the shortest diagonal, D must be a square with side length 1. Therefore, the

width of C' is at most /2 during the rotation from A to B. <
D
Q
O "o T T 4
o O O
o A o
° DR
fo! B
(o) o O O O O
Figure 6 A configuration Figure 7 An instance of moving points where the thinnest
having two strips of minimal strip changes orientations. The configuration that leads to the
width and overlapping area D. best intermediate solutions is shown in the middle.
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» Lemma 7. prg(STRIP) > /2

Proof. Let P consist of four points positioned in a unit square S. There are two thinnest
strips A and B for P, each of which is oriented along a different pair of parallel edges of S
(see Figure 7). If the orientation of a strip is 7/4 away from A and B, then its width is v/2.

Now assume that the top points of S are moving along the vertical sides of S, starting
from high above. Clearly, at the start of this motion, any strip C' approximating the thinnest
strip must align with A. At the end of this motion, when the top points align with the bottom
points of S, the strip C' must align with B. Therefore, the strip C' must at some point make
an angle of /4 with A and B. If z is the distance between the top and bottom points of S,
then the width of C at this orientation is (1+ x)v/2/2. The minimal width cannot exceed the
width of A and B, and hence is at most min(x,1). When = > 1, the ratio between the width of
C at orientation 7/4 and the minimal width is (1+z)v/2/2 > /2. This ratio is (1 +z)v/2/2x
when z < 1, for which we easily see that ﬂ/?x + x\/§/2:ﬂ > \/5/2 + \/5/2 =2. >

4 Lipschitz stability of OBB and STRIP

To derive meaningful bounds on the Lipschitz stability ratio, we assume that the points move
with at most unit speed. Furthermore, to achieve Lipschitz stability, the relation between
distances and speeds in input and output space should be scale invariant [22], that is, inputs
and outputs should be affected equally by scaling. This is currently not the case: if we scale
the coordinates of the points, then the distances in the input space change accordingly, but
the distances in the output space (between orientations) do not. For example, if we scale
the input coordinates down, such that the points reside in a smaller area, then the points
have to move a shorter distance than before scaling, to achieve the same change in optimum
orientation for either of the considered shape descriptors. This means that smaller instances
are less (Lipschitz) stable. To remedy this problem, we require that the diameter D of P(t) is
at least 1 at every time ¢. For PC this is not sufficient to prove a bounded Lipschitz stability
ratio, as we argue in Section 5. Notice that scaling up the coordinates has the opposite effect
and increases (Lipschitz) stability; we need no additional assumptions for such instances.

To produce a K-Lipschitz stable solution we use a chasing algorithm similar to the
generic algorithm introduced in Section 1. The algorithm maintains a solution over time,
and it can rotate towards the optimal solution at every point in time. However, there is one
main difference with the generic algorithm: Instead of chasing the orientation of an optimal
solution of OBB or STRIP, we chase the orientation of a diametrical pair. A diametrical
pair of a point set P is a pair of points (p,q) whose distance ||p — ¢|| equals the diameter
of P. As there can be multiple diametrical pairs of P, we take the following measures to
ensure that the diametrical pair we are chasing is well-defined. For our chasing algorithm we
start by chasing the orientation of an arbitrary diametrical pair (p,¢) until it is no longer a
diametrical pair of P. When this happens, we find a new pair (p’,¢’) of points that form a
diametrical pair of P, and start chasing the orientation of this pair, again until it is no longer
diametrical. This procedure is repeated to prevent unnecessarily switching of the diametrical
pair we are chasing. However, we want to point out that dealing with discrete changes is the
focal point of our analysis, and hence choosing an arbitrary diametrical pair at any point in
time, and chasing towards this orientation would not invalidate our analysis.

Although chasing an optimal shape descriptor would be a more intuitive approach, chasing
a diametrical pair is easier to analyze and sufficient to obtain an upper bound on the K-
Lipschitz stability ratio for OBB and STRIP. Furthermore, note that, since we assume that the
points move with unit speed, a chasing algorithm is K-Lipschitz stable if the solution changes
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Figure 8 Intervals at time ¢ (outer) and time ¢ + € (inner). The safe and danger zones are
indicated in blue and dashed red respectively. Orientations are shown in yellow, for the diametric
box at time ¢ and ¢ + €, and for the chasing algorithm at time ¢.

by at most K radians during such a unit movement of the points. Hence, in the following we
ignore the original definition of K-Lipschitz stable algorithms, and simply impose a maximum
speed of K on the solutions.

4.1 Chasing a diametrical pair

We denote the orientation of the diametrical pair we are chasing as o = «(t) and the diameter
of P as D = D(t) > 1. Furthermore, let W = W (t) be the width of the thinnest strip with
orientation «(t) covering all points in P(t). The diametric box of P(t) is the box containing
P(t) with orientation «(t), width W (¢) and length D(¢). We denote the (inverse) aspect ratio
of the diametric box by z = z(t) = W (t)/D(t). Finally, our chasing algorithm has orientation
B = B(t) and can change orientation with at most constant speed K. We generally omit the
dependence on t if ¢ is clear from the context.

Approach. The main goal is to keep chasing the orientation 3 as close as possible to the
orientation a of an optimal diameter box, specifically within a sufficiently small interval
around «. The challenge lies with the discrete flips of a. We must argue that, although flips
happen instantaneously, a short time span does not admit many flips over a large angle in the
same direction; otherwise we can never keep [ close to a with a bounded speed. Furthermore,
the size of the interval must depend on the aspect ratio z, since if z = 0, the interval around
«a must have zero size as well to guarantee a bounded approximation ratio.

For the analysis we introduce three functions depending on z: T'(z), H(z), and J(z).
Function H(z) defines an interval [a — H(z),« + H(2)] called the safe zone. We aim to show
that, if 8 leaves the safe zone at some time ¢, it must return to the safe zone within the time
interval (¢,t+ T'(z)]. We also define a larger interval I = [o — H(z) — J(2),a+ H(z) + J(z)].
We refer to the parts of I outside of the safe zone as the danger zone. Figure 8 shows [
at time t and time ¢ + €. Although § may momentarily end up in the danger zone due
to discontinuous changes, it must quickly find its way back to the safe zone. We aim to
guarantee that 8 stays within I at all times. Let E = E(t) refer to an endpoint of I. We
call J(z) the jumping distance and require that J(z) upper bounds how far E can “jump”
instantaneously. Let AFE(z, At) denote how far E moves over a time period of length At,
starting with a diameter box of aspect ratio z. We then require that AE(z,0) < J(z). Note
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Figure 9 Illustrations supporting the proof of Lemma 8: (a) A diametric box for the vertical
diametrical pair, with dimensions D, zD containing all the points. (b) If another pair of points is
also at distance D from each other, all points must lie in the blue area. (c) The orientation of other
diametrical pairs can change further in the same direction, but only after some points move outside
of the blue area and establish a new diameter. The grey line bisects the width of the blue area.

that by defining this upper bound, J(z) is defined recursively through E, since by definition
AE(z,At) is upper bounded by how much «, H(z) and J(z) change over time At. Hence
we need to carefully choose the right function for J(z). For the other functions we choose
T(z) = z/4 and H(z) = carcsin(z) for a constant ¢, which we will choose later.

The purpose of ¢ as a variable is that it will appear in the bounds for the speed and
approximation ratio of the solution. Choosing a value for ¢ then settles both the stability and
solution quality, and ideally leads to a trade-off between these criteria. In our case, however,
both are optimized to a reasonable level when choosing c.

Changes in orientation and aspect ratio. To verify that the chosen functions T'(z) and H(z)
satisfy the intended requirements, and to define the function J(z), we need to bound how much
« and z can change over a time period of length A¢. We refer to these bounds as Aa(z, At)
and Az(z, At), respectively. Note that, since the diameter can change discontinuously, we
generally have that Aa(z,0) > 0 and Az(z,0) > 0.

» Lemma 8. Aa(z, At) < arcsin(z + At(2 4 22)) for At < (1 —2)/(2+ 22).

Proof. Refer to Figure 9 for illustrations. Let D be the diameter at time ¢; the width
of the strip containing all the points is zD. Also, let D’ be the diameter at time ¢ + At,
and let (p},p,) be the diametrical pair at that time, such that the diametrical orientation
differs by an angle v from the orientation at time ¢. Note that At > |D — D’|/2, since
p} and p), have at most unit speed, and both were inside D at time ¢. This means that

At > % sin(y) — %. As At is minimized when D > D', we can obtain a lower bound for
At by equalizing (D — D')/2 = 2 sin(y) — 22. We obtain that At > D/(S;jr(;z)_z) > “g‘jgj

This is equivalent to vy < arcsin(z 4+ At(2+2z)), which is well-defined only for At < 21J:22Z. <

sin($ arcsin(z))—2At

» Lemma 9. Az(z,At) < z-— TToAT

for At < sin(3 arcsin(z))/2.

Proof. Let diameter D at time ¢ be realized by the pair of points (p1,ps) with orientation a.
The width of the diametric box is determined by two points ¢; and g2; the distance between
q1 and ¢ is at most D (see Figure 10a).
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Figure 10 Illustrations for the proof of Lemma 9: (a) A diametrical box with aspect ratio z and
points p1,p2,q1 and g2 at the boundary. (b) A strip with points located at the boundary, the width
of the strip is the maximum of the red lines. (c) The smallest diametrical box for time ¢t 4 € and in
red the distance the points can travel in At to further shrink the aspect ratio.

To minimize the aspect ratio of the diametric box at time ¢ + At, we need to find a
thinnest strip that contains all of p1, pa, ¢1, and ¢o. All four points are on the boundary of
the strip in the worst case, and we assume w.l.o.g. that p; and ¢ are on the same side of the
strip (same for ps and ¢2). Consider the following lines: L oriented in the orientation of the
thinnest strip (parallel to its boundary), L, spanned by p1ps and L, spanned by ¢1g2. Let
the angle between L, and L, be v, v > arcsin(z) (see Figure 10b). The distance between g1
and ¢y is then zD/sin(y). We denote the angle between L and L, by ~,, and between L
and L, by 4. We observe that vy, 4+ v4 = 7, as the orientation of L must bisect the angle
for the strip to be thinnest.

The width of the strip is max(D sin(vy,), 2D bin(’yq)/ bin( )). We show that this width is
at least D sin(3 arcsin(z)). This is clearly the case if 7, >
Since the function sin(vy,)/sin(y) = sin(y — 7,)/ sin(y) is 1nc1reau51ng7 setting v = arcsin(z) is
optimal. But then zD sin(v,)/sin(y) = Dsin(vy,) > Dsin(4 arcsin(z)). Thus, the width of
the thinnest strip is at least D sin(3 arcsin(z)).

The diametric box at time t can flip to the orientation of this thinnest strip. However,

3 arcsin(z), so assume the contrary.

the points can move to further shrink the aspect ratio of the diametric box. As a result, the
width of the diametric box at time ¢+ At is at least D sin(3 arcsin(z)) — 2A¢ (see Figure 10c).
For the same reason, diameter D’ can increase such that D’ < D + 2A¢t. The final aspect
ratio is then 2/ > (Dsin(3 arcsin(z)) — 2A¢)/(D + 2At). Since D > 1, we obtain that
Az(z,At) < z — (sin(3 arcsm( )) — 2At)/(1 + 2At). Note that this bound is meaningful only
for At < sin(3 arcsin(z))/2. <

Jumping distance. We now derive a valid function for J(z). Recall that we require J(z) to
be at least the amount AFE(z, At) that E can move in At = 0 time.

» Lemma 10. J(z) =

(c+ 2)arcsin(z) is a valid jumping distance function.

Proof. By definition of 6 E(z, At), we get that AE(z,0) < Aa(z,0)+H (z)—H(2—
J(z) -
z—sin(2 arcsin(z)), respectively, so after simplification we get AE(z,0) <

)

Az(z,0)
J(z — Az(z,0)). Lemmata 8 and 9 tell us that Aa(z,0) < arcsin(z) and Az(z,0)

_|_
<
(1+c¢/2) arcsin(z) +
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J(z) — J(sin(4 arcsin(z))). Since we require that J(z) > AFE(z,0), it suffices to show
that J(sin(3 arcsin(z))) > (1 + ¢/2) arcsin(z). Using J(z) = (c + 2) arcsin(z), we get that
J(sin(4 arcsin(z))) = (¢ + 2) arcsin(z) /2, as required, and hence this J(z) is valid. <

» Corollary 11. If § is in I, then |a — 8] < (2¢ 4 2) arcsin(z).

Bounding the speed. To show that the orientation 8 stays within the interval I, we argue
that over a time period of T'(z) we can rotate [ at least as far as E. As the endpoint of the
safe zone moves at most as fast as E, this implies that if 3 leaves the safe zone at time ¢, it
returns to it in the time period (¢,t + T'(z)]. Thus we require that KT'(z) > AE(z,T(z)), as
[ can rotate at most K units when the points move at unit speed. We need to keep up only
when the safe zone does not span all orientations, that is, the above inequality must hold only
when H(z) < m/2, which can be rewritten into z < sin(g:). At this point in the analysis,
we choose a specific value ¢ = 3 to reduce the complexity of the calculations for Lemma 14.
This results in fixed size of the interval: we need to chase a only when z < sin(%) = %
Additionally it leads to a lower bound for K, the speed at which the orientation is allowed
to change with respect to the change in input, thus settling the stability.

In our proofs we use the following trigonometric inequalities.
» Lemma 12. The following inequalities hold for 0 < x < 1:

1. sin(Aarcsin(z)) < Az for A >1
2. sin(Marcsin(x)) > Az for 0 < A < 1.

Proof. We first show inequality (1). Let 2 = sin(y). We rewrite (1) into sin(Ay) < Asin(y).
The derivative with respect of y is Acos(Ay) for the left side and Acos(y) for the right
side. Since cos(y) > cos(Ay) for 0 < y < w/X and A > 1, we get that sin(\y) < Asin(y)
for 0 < y < w/A. In particular, for y = 7/(2X) we get that 1 = sin(Ay) < Asin(y).
Since sin(Ay) < 1 and Asin(y) attains it first maximum at y = 7/2, we thus also get that
sin(Ay) < Asin(y) for 0 <y < 7/2. Since x = sin(y) and sin(7/2) = 1, the result follows.

For inequality (2), we set & = sin(} arcsin(y)). We can then obtain that either y >

Asin(y arcsin(y)), or > sin(5 arcsin(y)). As shown above, this inequality holds for 0 <
y < 1. Since y = sin(Ar/2) < 1 implies z = sin(} arcsin(y)) = 1, the inequality holds for

0<z< 1. |

» Lemma 13. z < arcsin(z) < %n(a)x for0<a<1land0<z<a.

Proof. First note that arcsin(z) is a convex function for 0 < z < 1. Since the derivative of
x and arcsin(z) is 1 at x = 0, this directly implies that x < arcsin(x). Furthermore, since
arcsin(z) = %ﬂw)x for x = 0 and = = a, the convexity of arcsin(z) also directly implies
the second inequality. |

» Lemma 14. [f K > 43, then |B(t) — a(t)| < 8arcsin(z) (using ¢ = 3) for all t.

Proof. Consider a time ¢ when [(t) leaves the safe zone. We first argue that §(¢') will
be in the safe zone at some time ¢’ € (t,t + T(z)]. To show this, we need to prove that
KT(z) > AE(2,T(z)). As shown earlier, this is relevant only when z < % if ¢ = 3.

To apply the bounds of Lemmata 8 and 9, we must ensure that T'(z) = z/4 satisfies
the bounds for At. For Lemma 8, observe that (1 — 2)/(2 + 2z) is decreasing and z/4 is
increasing, and (1 — z)/(2+22) = £ > z/4, 2 = 1. For Lemma 9 we apply Lemma 12 to
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show that sin( arcsin(z))/2 > z/4. We thus get the provided bounds on Aa(z,T(z)) and

Az(z,T(z)), and as a result a bound on AE(z,T(z)). In particular, for At < T(z), we get:
AE(z,At) < Aa(z,At) + H(z) — H(z — Az(z, At)) + J(2) — J(z — Az(z, At))
= arcsin(z + At(2 + 2z)) + 8arcsin(z)
_ Saresin <sin(% arcsin(z)) — 2At> .

1+ 2A¢

We have that z < 1, At < 2/4 < § and z + At(2+ 2z) < £. Then, using the inequalities of
Lemma 13, where 2arcsin(3) < 1.05 and £ arcsin(Z) < 1.22, and using Lemma 12, we get:

4z — 16At

<1 4z —
AE(z,At) <1.22(z + At(2 + 2z)) + 8.4z T 27

< 9.62z + 1.22A4(2 + 22),

where the last inequality uses the fact that At < z/4, and thus 16A¢ < 4z. Finally, filling in
At =T(z) = z/4, we get:

AE(z,T(2)) < 10.232 4 0.6122

1
< 10.6z for z < 3
< KZ for K > 43.

Finally, we need to argue that 8(t) does not leave I in the interval (¢,t+ T'(z)]. To show this,
we need to prove that KAt > AE(z, At) — J(z) for all At € [0,T(z)]. Using the inequalities
above, we have:

AE(z,At) — J(z) < arcsin(z + At(2 + 2z)) + 3arcsin(z)
_ Saresin <sin(; arcsin(z)) — 2At> '
14 2A¢
We first argue that this function is nondecreasing in z, such that AE(z, At) — J(z) <
AE(3,At) — J(3). For that we consider its partial derivative in z:
O(AE(z,At) — J(z)) 3 14 2At
RE T VI-2  \JT- (2Dt +z+ 2002)2

4 cos(3 arcsin(z))

V1—22 \/(1 + 2At)? — (sin(3 arcsin(z)) — 2At)?

3 1+ 2A¢
> + -
V1I—22 J1-22
4 cos(3 arcsin(z))

V1— 22 \/1 — (sin(4 arcsin(z)) — 2At)?

4 cos(3 arcsin(z))
>—— [1- >0
V1—2 \/1 — sin’(5 arcsin(z))
As a result we can conclude the following:
1 1
™ (1 . 446 -2
=3 + arcsin (2 + 3At> — 8arcsin (1 - 4—|—8At>

CGT
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Note that this bound is 0 whenever At = 0. It is now sufficient to show that the derivative of
this function with respect to At is at most K for 0 < At < %. Let a = 4+ 6 — /2 =~ 5.035.

OAE(S,At) 6 . 64a
B _ 2 a a
OAt 4—(1+3A0)?2 (44 8At)2\/ﬁ — (% )?
B 6 n 64a
4— (14 3A1)2  (4+8At)\/2a(4 + 8At) — a2
6 16a

< +
V4A—(1+3At)?2  V8a—a?
<4.14+420.86 <43 < K

Here we used that 3/,/4 — (14 3At)? is increasing in At and that At < §. We conclude
that KAt > AE(z, At) — J(z) for all At € [0,T(z)]. Thus, 8(t) does not leave I during
(t,t +T(z)]. By repeating this argument whenever §(t) leaves the safe zone, we can conclude
that |5(t) — a(t)| < 8arcsin(z) for all times ¢. <

4.2 Lipschitz stability ratio

What remains is to analyze the approximation ratio of the chasing algorithm for 0BB. Note
that, while we already chose ¢ = 3 for Lemma 14, we finish the analysis of the solution quality
with ¢ as a variable. This demonstrates how the solution quality depends on the values of ¢,
and shows how a different choice of ¢ would lead to a different approximation factor.

Corollary 11 implies that the orientation 5 of the chasing algorithm is at most an angle
(2¢ + 2) arcsin(z) away from the orientation of the diameter.

» Lemma 15. If |3 — o] < (2¢+ 2) arcsin(z), then fops(8, P) < (4dc+ 6) ming fops(@, P).

Proof. Assume that at some time ¢t we have a diametric box with diameter D and aspect
ratio z, and let (p1,p2) be the diametrical pair we are chasing. Additionally, let points ¢;
and ¢ lie on the longer sides of the diametric box, defining its width. The smallest OBB
must contain pi, ps, q1, and ¢a, and therefore contains the triangles formed by {p1,p2,q1}
and {p1,p2,q2}. With the diametrical pair a fraction x along the minor axis in the box,
the heights of these triangles with base p1ps are x - Dz and (1 — ) - Dz respectively (see
Figure 11a). Their total area is thus D?2z/2 and provides a lower bound for the area of OBB.

Now consider the box of the chasing algorithm, where Aa = |5 — o] < (2¢ + 2) arcsin(z).
The major axis (in direction ) has length at most D. Let the minor axis be bounded by two
points v; and vy, and vy the angle between the lines spanned by viv5 and by the diametrical
pair p1p2, on the opposite side of Aa with respect to p;ps. Let the smallest angle between
those two lines be «/. Note that in the worst case v; and v are located on the boundary of
the diametric box. Would those points not lie on the boundary, then we could move them
there and increase the area of the chasing box. The distance between v; and wvs is therefore
bounded by zD/sin(y’). Whenever 7' = ~, the angle between the minor axis of the chasing
box and the line through v; and vy is 7/2 — v — A« (see Figure 11b). Thus, the length of
the minor axis is zD cos(7/2 — v — Aa)/ sin(y) = zD sin(y + Aa)/ sin(7).

However, it can also be the case that v/ = m — 7 (see Figure 11c). The angle between the
minor axis of the box and the line through vy and vs is now 7/2 — 4’ + Aa. Analogously, we
hence find that the length of the minor axis is zD cos(n/2 — ' + Aa)/sin(y’) = zDsin(y’ —
Aa)/sin(v"). Using v = 7 — v, the length of the minor axis can be simplified to zD sin(y +
Aa)/sin(7y), which is the same expression as for v = +/.
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Figure 11 Illustrations supporting proof of Lemma 15: in blue the diametric box, and for (b)
and (c) the box of the chasing algorithm in red.

(c)

We now look for the maximum of the function 2D sin(y + A«)/ sin(), which is obtained
for v + Aa < 7. Additionally, we know that v > arcsin(z), since v; and vy are not the
diametrical pair defining the major axis of the diametric box. Hence, under these restrictions
the function zDsin(y + A«)/sin(vy) is decreasing in -, we attain the maximum when
~ = arcsin(z). Substituting v = arcsin(z), we get zD sin(arcsin(z) + Aa)/ sin(arcsin(z)) =
Dsin(arcsin(z) + Aa). Finally, A« lies between 0 and (2¢ + 2) arcsin(z). We derived that
v+ Aa < F, so if Aa = (2¢ + 2) arcsin(z) would lead to v + A« > T, then we can find a
constant x, with 0 <z < (2¢ + 2), which ensures that v 4 xarcsin(z) < 7. Multiplying the
lengths of the major and minor axes results in an area of at most D?sin((1 + z) arcsin(z))
for the box of the chasing algorithm. We apply Lemma 12 to get an area between D?z and

D?z(2¢ + 3). Thus, fors(B, P) < (4c+ 6)ming foss(¢, P). <
» Lemma 16. If |3 — a| < (2¢+ 2) arcsin(z), then fsppwp(8, P) < (4dc+ 6) ming forpie(¢, P).

Proof. Assume that at some time ¢t we have a diametric box with diameter D and aspect
ratio z, and let (p1,p2) be the diametrical pair we are chasing. The width of the diametric
box is determined by two points ¢; and gs.

We first derive a lower bound for the width of the thinnest STRIP; note that this follows
the same rationale as in the proof of Lemma 9 (and as illustrated in Figures 10a and 10b).
Such a strip must contain the points pi, p2, g1 and ¢2. As adding points to a point set
can only widen the thinnest strip, we consider just these four points for a lower bound.
For the thinnest STRIP, all four points are on the boundary of the strip in the worst case,
and we assume w.l.o.g. that p; and ¢; are on the same side of the strip (same for po
and ¢o). Consider the following lines: L oriented in the orientation of the strip (parallel
to its boundary), L, spanned by pips and L, spanned by ¢1¢2. Let the angle between
L, and L, be v, v > arcsin(z). The distance between ¢; and ¢y is then zD/sin(y). We
denote the angle between L and L, by 7,, and between L and L, by v,. We observe that
Yp + V¢ =, as the orientation of L must bisect the v angle for the strip to be thinnest. The
width of the strip is max (D sin(v,), 2D sin(y,)/ sin(vy)). We show that this width is at least
D sin(3 arcsin(z)). This is clearly the case if v, > 1 arcsin(z), so assume the contrary. Since
the function sin(y — ~y,)/sin(7y) is increasing, it is optimal to set v = arcsin(z). But then
zDsin(v,)/ sin(y) = Dsin(vy,) > Dsin(3 arcsin(z)). Thus, the width of the thinnest strip is
at least Dsin(4 arcsin(z)) > Dz/2 by Lemma 12.

Now consider the strip of the chasing algorithm, with an orientation § differing at most

Aa = |B — a|] < (2¢+ 2) arcsin(z) from the orientation of the diametrical pair we are chasing.

To prove an upper bound on the width of this strip we follow the same approach as in the proof
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of Lemma 15 (and as illustrated in Figures 11b and 11c). Let the width of the strip be bounded
by two points v; and v, where the angle between the line through v; and vs and the line
through the diametrical pair pp2, opposite of A« with respect to p1po, is . Let the smallest
angle between those two lines be /. Note that, the distance between v, and ve is 2D/ sin(y’),
since they define the width of the diameter box. When ' = v, the angle between the vector
perpendicular to the orientation of the strip and the line through v, and vs is 7/2 — v — Aa.
Thus, the width of the strip is zD cos(7/2 — v — Aa)/ sin(y) = zDsin(y + Aa)/ sin(y).

On the other hand, whenever ' = m — ~, the angle between the vector perpendicular to
B and the line vivy is 7/2 — ' + Aa. Analogously, we find that the width of the strip is
zDcos(w/2 — ' + Aa)/sin(y") = zDsin(y’ — Aa)/sin(y’). Using v/ = 7 — v, the width of
the strip can be simplified to zD sin(y + A«)/ sin(y), which is the same expression as for the
case in which v/ = ~.

We now look for the maximum of the function zD sin(y + A«)/ sin(7y),
as for Lemma 15, and find it for 4 = arcsin(z). Thus, using v = arcsin(z), the width of the
strip is at most D sin((2¢ + 3) arcsin(z)), which is at most Dz(2¢ + 3) by Lemma 12. We
finally obtain that fsrre (8, P) < (4dc+ 6) ming fsmmw (¢, P). <

in the same way

By combining Lemmata 14, 15, and 16, we obtain the following bounds on the Lipschitz
stability of OBB and STRIP.

» Theorem 17. The following Lipschitz stability ratios hold for OBB and STRIP, assuming
diameter D(t) > 1 for all t and points move with at most unit speed:

pLs(0OBB,43) < 18,

pLs(STRIP,43) < 18.

5 Lipschitz stability of PC

The chasing algorithm does not work for the first principal component. Specifically, our scale
normalization by requiring that the diameter is at least one at any point in time does not
help. This can intuitively be attributed to the optimization function of pc. Rather than
being defined by some form of extremal points, fpc is determined by variance: although
the diameter may be large, many close points may still largely determine the first principal
component. We formalize this via the lemma below. It implies that requiring a minimal
diameter is not sufficient for a chasing algorithm with bounded speed to approximate PC.
The proof is inspired by the construction in [13] that shows the ratio on the areas between a
bounding box aligned with the principal components and the optimal oriented bounding box
can become infinite.

» Lemma 18. For any constant K, there exists a point set P(t) with a diameter of at least
1 at all times, such that any shape descriptor that approximates the optimum of fpc must
move with speed strictly greater than K.

Proof. For the sake of contradiction, assume that, for a certain K, all point sets with a
diameter of at least 1 at all times admit a shape descriptor that is a p-approximation of
the optimum of fp. while moving with speed at most K. We derive a contradiction by
constructing a point set P for which moving with speed at most K cannot be sufficient to
approximate fpq; see Figure 12 for illustration.

P consists of 2 4+ n points. The first two points p; and py are stationary at (—1,0) and
(1,0) — this immediately guarantees that the diameter is always larger than 1. Furthermore,
P has n moving points, denoted by set P’, that are symmetrically and colinearly placed near
the origin at distances in some interval [b/2,b]. As such, the mean of P is the origin.
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Figure 12 Construction that shows how PC can move arbitrarily fast, despite a minimal diameter.

The two points connected by the blue line form a diametrical pair for the whole point set. The
dense set of points located at distance b/2 from the origin (in grey) can move around the origin
in a short amount of time to become vertical (in yellow). The orientation of a K-Lipschitz stable
descriptor (in red) cannot move fast enough to match this change.

Recall that fpc measures the sum of squared distances from each point to a line of a given
orientation through the mean of the point set — in our case through the origin. Initially, we
place P’ horizontally making all the points collinear and thus fyc is zero for the horizontal
orientation and non-zero for any other orientation. Hence, the assumed shape descriptor
must be horizontal initially — otherwise, it would not be a p-approximation.

We now rotate the points in P’ such that the line through P’ becomes vertical (rotation

over §) in ;5 time. Now, the shape descriptor can rotate over at most 7 in this same time.

The vertical line has cost 2 (12 for each of p; and p») and thus the optimal orientation has
cost at most 2. What remains is to choose values for b and n such that any shape descriptor
with angle a at most 7 to the horizontal axis has cost strictly larger than 2p.

For points moving at unit speed, our described motion is feasible in the given time if

b= 1%/5 = ﬁ We observe that p; and p, together add a cost of 2sin? «, and each

of the points in P’ adds at least (b/2)? cos? « = 15z cos? a. Since the shape descriptor
1

can reach only angles of at most T in the alotted time, we know that cos?a > I and
4 2

sin? @ > 0 regardless of a. So, the total cost for the shape descriptor at angle a is at

1
16K?2

for our construction. We obtain a contradiction when 57 > 2p and thus we may set
n > 64K2p. <

least 2sin?a +n

cos?a > # However, we can add arbitrarily many points in P’

6 Conclusion

We studied the topological stability (ratio of continuous solutions to optimal discontinuous
solutions) and Lipschitz stability (ratio of continuous solutions with bounded speed to optimal
discontinuous solutions) of three common orientation-based shape descriptors. Although
stateless algorithms cannot achieve topological stability, we proved tight bounds on the
topological stability ratio for state-aware algorithms. Our Lipschitz analysis focuses on upper
bounds, showing that a chasing algorithm achieves a constant ratio for a constant maximum
speed, for two of the three considered descriptors. It remains open to establish whether
lower bounds exist that are stronger than those already given by our topological stability
results. We believe that our approach for the analysis of the Lipschitz upper bounds are of
independent interest, and can be applied to analyze other problems that could be approached
via a chasing algorithm.

1:21

CGT



1:22

Stability Analysis of Kinetic Orientation-Based Shape Descriptors

—— References

1

10

11

12

13

14

15

16

17

18

19

P. Agarwal, L. Guibas, J. Hershberger, and E. Veach. Maintaining the extent of a mov-
ing point set. Discrete €& Computational Geometry, 26(3):353-374, 2001. doi:10.1007/
s00454-001-0019-x.

P. Agarwal, S. Har-Peled, and K. Varadarajan. Approximating extent measures of points.
Journal of the ACM, 51(4):606-635, 2004. doi:10.1145/1008731.1008736.

Pankaj K. Agarwal and Sariel Har-Peled. Maintaining approximate extent measures of moving
points. In S. Rao Kosaraju, editor, Proc. 12th Symposium on Discrete Algorithms (SODA),
pages 148-157, 2001. URL: http://dl.acm.org/citation.cfm?7id=365411.365431.

G. Barequet, B. Chazelle, L. Guibas, J. Mitchell, and Ayellet Tal. BOXTREE: A hierarchical
representation for surfaces in 3d. Computer Graphics Forum, 15(3):387-396, 1996. doi:
10.1111/1467-8659.1530387.

G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bounding
box of a point set in three dimensions. Journal of Algorithms, 38(1):91-109, 2001. doi:
10.1006/jagm.2000.1127.

N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and robust
access method for points and rectangles. In Proc. 1990 ACM SIGMOD, pages 322—-331, 1990.
doi:10.1145/93597.98741.

S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape
contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(4):509-522,
2002. doi:10.1109/34.993558.

S. Bereg, B. Bhattacharya, D. Kirkpatrick, and M. Segal. Competitive algorithms for
maintaining a mobile center. Mobile Networks and Applications, 11(2):177-186, 2006.
d0i:10.1007/s11036-006-4470-z.

L. Brouwer. Uber Abbildung von Mannigfaltigkeiten. Mathematische Annalen, 71(1):97-115,
1911.

D. Brzakovic, X. Mei Luo, and P. Brzakovic. An approach to automated detection of
tumors in mammograms. IEEE Transactions on Medical Imaging, 9(3):233—-241, 1990. doi:
10.1109/42.57760.

F. Chin, C. An Wang, and F. Lee Wang. Maximum stabbing line in 2d plane. In Computing
and Combinatorics, pages 379-388, 1999. doi:10.1007/3-540-48686-0_38.

M. de Berg, M. Roeloffzen, and B. Speckmann. Kinetic 2-centers in the black-box model.
In Proc. 29th Symposium on Computational Geometry (SOCG), pages 145-154, 2013. doi:
10.1145/2462356.2462393.

D. Dimitrov, C. Knauer, K. Kriegel, and G. Rote. Bounds on the quality of the PCA bounding
boxes. Computational Geometry, 42(8):772-789, 2009. doi:10.1016/j.comgeo.2008.02.007.
S. Durocher and D. Kirkpatrick. The Steiner centre of a set of points: Stability, eccentricity,
and applications to mobile facility location. International Journal of Computational Geometry
and Applications, 16(04):345-371, 2006. doi:10.1142/50218195906002075.

S. Durocher and D. Kirkpatrick. Bounded-velocity approximation of mobile Euclidean 2-
centres. International Journal of Computational Geometry and Applications, 18(03):161-183,
2008. URL: https://doi.org/10.1142/5021819590800257X.

Stephane Durocher and David G. Kirkpatrick. The projection median of a set of points.
Computational Geometry, 42(5):364-375, 2009. doi:10.1016/J.COMGEQ.2008.06.006.

H. Freeman and R. Shapira. Determining the minimum-area encasing rectangle for an arbitrary
closed curve. Communications of the ACM, 18(7):409-413, 1975. doi:10.1145/360881.360919.
S. Gottschalk, M. Lin, and D. Manocha. OBBTree: A hierarchical structure for rapid
interference detection. In Proc. 23rd SIGGRAPH, pages 171-180, 1996. doi:10.1145/237170.
237244.

A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. 1984 ACM
SIGMOD, pages 47-57, 1984. doi:10.1145/602259.602266.


https://doi.org/10.1007/s00454-001-0019-x
https://doi.org/10.1007/s00454-001-0019-x
https://doi.org/10.1145/1008731.1008736
http://dl.acm.org/citation.cfm?id=365411.365431
https://doi.org/10.1111/1467-8659.1530387
https://doi.org/10.1111/1467-8659.1530387
https://doi.org/10.1006/jagm.2000.1127
https://doi.org/10.1006/jagm.2000.1127
https://doi.org/10.1145/93597.98741
https://doi.org/10.1109/34.993558
https://doi.org/10.1007/s11036-006-4470-z
https://doi.org/10.1109/42.57760
https://doi.org/10.1109/42.57760
https://doi.org/10.1007/3-540-48686-0_38
https://doi.org/10.1145/2462356.2462393
https://doi.org/10.1145/2462356.2462393
https://doi.org/10.1016/j.comgeo.2008.02.007
https://doi.org/10.1142/S0218195906002075
https://doi.org/10.1142/S021819590800257X
https://doi.org/10.1016/J.COMGEO.2008.06.006
https://doi.org/10.1145/360881.360919
https://doi.org/10.1145/237170.237244
https://doi.org/10.1145/237170.237244
https://doi.org/10.1145/602259.602266

W. Meulemans, K. Verbeek, and J. Wulms

20

21

22

23
24

25

26

27

28

29

30

31

32

33

34

35

J. Klosowski, M. Held, J. Mitchell, H. Sowizral, and K. Zikan. Efficient collision detection using
bounding volume hierarchies of k-DOPs. IEEFE Transactions on Visualization and Computer
Graphics, 4(1):21-36, 1998. doi:10.1109/2945.675649.

D. Letscher and K. Sykes. On the stability of medial axis of a union of disks in the plane. In
Proc. 28th Canadian Conference on Computational Geometry (CCCG), pages 29-33, 2016.
W. Meulemans, B. Speckmann, K. Verbeek, and J. Wulms. A framework for algorithm stability
and its application to kinetic Euclidean MSTs. In Proc. 13th Latin American Theoretical
Informatics Symposium (LATIN), pages 805-819, 2018. doi:10.1007/978-3-319-77404-6\
_58.

J. Milnor and D. Weaver. Topology from the differentiable viewpoint. Princeton U. Press, 1997.
J. O'Rourke. Finding minimal enclosing boxes. International Journal of Parallel Programming,
14(3):183-199, 1985. doi:10.1007/BF00991005.

N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases using packed
r-trees. In Proc. 1985 ACM SIGMOD, pages 17-31, 1985. doi:10.1145/318898.318900.

T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index for multi-
dimensional objects. In Proc. 13th International Conference on Very Large Data Bases, pages
507-518, 1987. URL: http://www.vldb.org/conf/1987/P507 .PDF.

G. Toussaint. Solving geometric problems with the rotating calipers. In Proc. IEEE Melecon,
volume 83, page A10, 1983.

E. Tyrtyshnikov. A brief introduction to numerical analysis. Springer, 2012.

G. van den Bergen. Efficient collision detection of complex deformable models using AABB

trees. Journal of Graphics, GPU, & Game Tools, 2(4):1-13, 1997. doi:10.1080/10867651.

1997.10487480.

Ivor van der Hoog, Marc J. van Kreveld, Wouter Meulemans, Kevin Verbeek, and Jules Wulms.
Topological stability of kinetic k-centers. Theoretical Computer Science, 866:145-159, 2021.
doi:10.1016/j.tcs.2021.03.026.

Jules Wulms, Juri Buchmiiller, Wouter Meulemans, Kevin Verbeek, and Bettina Speckmann.
Stable visual summaries for trajectory collections. In Proc. 14th Pacific Visualization Sympo-
stum (PacificVis), pages 61-70, 2021. doi:10.1109/PacificVis52677.2021.00016.

J. Xie, G. Dai, F. Zhu, E. Wong, and Y. Fang. DeepShape: Deep-learned shape descriptor
for 3D shape retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(7):1335-1345, 2017. doi:10.1109/TPAMI.2016.2596722.

H. Zhang, A. Berg, M. Maire, and J. Malik. SVM-KNN: Discriminative nearest neighbor
classification for visual category recognition. In Proc. 19th Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2126-2136, 2006. doi:10.1109/CVPR.2006.301.

Y. Zhong. Intrinsic shape signatures: A shape descriptor for 3d object recognition. In Proc.
12th International Conference on Computer Vision (ICCV) Workshops, pages 689-696, 2009.
d0i:10.1109/ICCVW.2009.5457637.

B. Zitova and J. Flusser. Image registration methods: a survey. Image and Vision Computing,
21(11):977-1000, 2003. doi:10.1016/50262-8856(03)00137-9.

1:23

CGT


https://doi.org/10.1109/2945.675649
https://doi.org/10.1007/978-3-319-77404-6_58
https://doi.org/10.1007/978-3-319-77404-6_58
https://doi.org/10.1007/BF00991005
https://doi.org/10.1145/318898.318900
http://www.vldb.org/conf/1987/P507.PDF
https://doi.org/10.1080/10867651.1997.10487480
https://doi.org/10.1080/10867651.1997.10487480
https://doi.org/10.1016/j.tcs.2021.03.026
https://doi.org/10.1109/PacificVis52677.2021.00016
https://doi.org/10.1109/TPAMI.2016.2596722
https://doi.org/10.1109/CVPR.2006.301
https://doi.org/10.1109/ICCVW.2009.5457637
https://doi.org/10.1016/S0262-8856(03)00137-9

	1 Introduction
	2 Stateless algorithms
	3 Topological stability
	4 Lipschitz stability of OBB and STRIP
	4.1 Chasing a diametrical pair
	4.2 Lipschitz stability ratio

	5 Lipschitz stability of PC
	6 Conclusion

