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Abstract
In this work, we study several variants of matrix reduction via Gaussian elimination that try to
keep the reduced matrix sparse. The motivation comes from the growing field of topological data
analysis where matrix reduction is the major subroutine to compute barcodes, the main invariant
therein. We propose two novel variants of the standard algorithm, called swap and retrospective
reductions. We test them on a large collection of data against other known variants to compare
their efficiency, and we find that sometimes they provide a considerable speed-up. We also present
novel output-sensitive bounds for the retrospective variant which better explain the discrepancy
between the cubic worst-case complexity bound and the almost linear practical behavior of matrix
reduction. Finally, we provide several constructions on which one of the variants performs strictly
better than the others.
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1 Introduction

1.1 Motivation
Persistent homology is arguably the most important tool in the thriving area of topological
data analysis. The presence of efficient algorithms for computing the barcode, its main
invariant, has been an important contributing factor to its success. In the so-called standard
algorithm [15], this computation boils down to a “restricted” Gaussian elimination of a
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6:2 Keeping it sparse

boundary matrix of a filtered simplicial complex: no swapping of rows or columns, only
column operations are allowed, and the additions are only from left to right.

Since Gaussian elimination has cubic worst-case complexity in the size of the matrix,
barcodes can be computed in polynomial time. This makes it already efficient compared
to many other topological invariants, which are usually (NP-)hard to compute or not
computable at all. In practice, however, the performance is even better: we observe a
close-to-linear practical behavior that allows computing the barcode for matrices with billions
of columns [5, 34]. This happens because the matrices to be reduced are sparse (that is, the
number of nonzero entries per column is a small constant) and tend to remain so during the
reduction.

Gaussian elimination on sparse matrices is cheaper because column additions can be
performed more efficiently with appropriate choices of sparse matrix data structures [5].
However, the sparsity of the input matrix does not alter the worst-case cubic bounds for
matrix reduction. Indeed, carefully crafted constructions force a matrix to become dense in
the elimination process, making later column additions expensive [31]. On the other hand,
such situations seem to be pathological and do not happen in practice (and also not on
average [20]). Therefore, the practical efficiency of reduction procedures can be linked to the
preservation of the sparsity of the matrix during the elimination process.

The standard algorithm has been optimized in several ways, exploiting the special
structure of boundary matrices. This led to significant further improvements in practice
(which are discussed below). However, the impact of sparsity on the reduction has not been
adequately studied. We pose the following questions in this paper: are there variants of the
standard algorithm, possibly performing different operations, that keep the matrix sparser
than the standard one, and do these variants exhibit better practical behavior than existing
methods?

1.2 Results
We first observe that some of the restrictions imposed on the Gaussian elimination can be
relaxed: any operation preserving the ranks of certain submatrices is allowed (Corollary 1).
This observation enables us, for example, to swap certain columns and to perform some
right-to-left column operations.

With this insight, we then introduce two new variants of the standard algorithm. The
first one, called the swap algorithm, introduces one extra rule: before adding a column
c1 to a column c2, it swaps c1 and c2 if c2 is sparser (i.e., has fewer nonzero entries). Note
that checking the size of a column, as well as swapping two columns, requires constant time
for most matrix representation types, and hence the overhead of this variant is negligible as
long as the column data structure allows for easy retrieval of the size. We show in extensive
experimental tests that the swap algorithm is usually competitive with the fastest known
algorithms and sometimes leads to significant speedup.

The other variant is called the retrospective algorithm. It is based on the (well-
known) idea that, once the pivot of a column has been found, we can perform additional
column operations to further eliminate entries in the column (sometimes, this is called the
“full” or the “exhaustive” reduction). The retrospective variant pushes this idea further:
it eliminates entries also via right-to-left additions of newly reduced columns. We show
significant speedup over the state-of-the-art by experimental comparison for this variant as
well. Moreover, the retrospective strategy links the non-zero entries of a column with the
(persistent) homology classes at that step, providing complexity bounds that depend on the
topology of the underlying data set and are therefore output-sensitive.
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For practical efficiency, both variants are combined with existing improvements of the
standard algorithm, namely the clear and compress optimization [3] which typically save
a lot of operations in matrix reduction.

We also show that none of the proposed algorithms is strictly better than the others in the
following sense. Having chosen one of the three algorithms (standard, swap, and retrospective
reduction), we can find a family of inputs for which the chosen algorithm performs a linear
number of operations whereas the other two have quadratic complexity.

We also investigate other variants to ensure sparsity. For instance, during the exhaustive
reduction, we generate several intermediate columns which are all valid representations
for the rest of the algorithm, and we pick the sparsest column among these. Remarkably,
whilst this strategy appears to improve on both the standard and the exhaustive variants, in
practice it performs worse than both of them. This shows that ensuring sparsity is not the
only reason for the good practical performance of computing barcodes.

1.3 Related work

The PHAT library [5] contains a collection of algorithms and matrix representation types to
test various approaches for Gaussian elimination on boundary matrices in a unified framework.
Our work contributes several new algorithms to the PHAT library. We confirm the earlier
observation that the quality of different elimination strategies significantly depends on the
chosen data structure.

There are numerous other libraries to compute the barcode; we just refer to some
comparative studies [29, 34, 42]. We point out that, in there, all tested libraries include
further functionalities, in particular, generating a boundary matrix out of a point cloud,
whereas PHAT, as well as the present paper, focuses entirely on the Gaussian elimination
step. PHAT is among the most efficient libraries for this substep, as demonstrated, for
instance, in [5] and [34].

Even more efficient algorithms have been developed for special cases of simplicial com-
plexes, for instance, Vietoris–Rips complexes [2, 24] and cubical complexes [22, 25, 38, 39].
The improvements in these specialized implementations are not based on optimized reduction
strategies such as the ones considered in the present paper. However, not all of the reduction
strategies considered here are compatible with these implementations, which is why we focus
on the general-purpose framework PHAT for our comparisons. There have also been several
approaches that have focused specifically on parallel and distributed computation [3, 4, 28, 40]
for performance gains. Another approach, taken for example in [9, 21], is to simplify the
filtration without modifying the homology. This approach effectively downsizes the matrix
but does not sparsify it.

The best worst-case complexity for computing the barcode is O(nω), where ω is the matrix
multiplication constant [30]. However, this approach is not based on Gaussian elimination
and is not competitive in practice. There is no sub-cubic complexity bound known for any
barcode algorithm based on Gaussian elimination. The output-sensitive bounds that we
derive still lead to cubic worst-case bounds, but can be tighter depending on the topological
properties of the input. These bounds refine the bound by Chen and Kerber [10].

Computing homology with respect to Z coefficients requires computing the Smith normal
form using integer Gaussian elimination [32, Chapter 1]. In that context, fill-in of matrices
is a minor concern, whereas a significant challenge comes from the fact that the size of
intermediate entries during matrix reduction can grow exponentially [19].

CGT



6:4 Keeping it sparse

2 Preliminaries

2.1 Matrix reduction
The algorithms presented in Section 3 can be stated and implemented for other field coefficients
with minor changes. However, for simplicity, throughout the paper, we work with Z2
coefficients. Given a matrix M with entries in Z2, M i denotes its i-th row, Mj its j-th
column, M i

j its element in position i, j, and #Mj the number of nonzero entries in Mj . N

denotes the number of columns of M .
The pivot of a column, denoted by piv (Mj), is the (row) index of the lowest nonzero

element in Mj . A left-to-right column operation is the addition of Mj to Mi with j < i.
A matrix is reduced if all its nonzero columns have pairwise distinct pivots. The process of
obtaining a reduced matrix using column additions is called matrix reduction. A pivot
pair is a pair of indices (i, j) such that i = piv (Mj) in the reduced matrix. Algorithm 1
reduces the columns from left to right in order and is usually referred to as the standard
algorithm for matrix reduction.

Algorithm 1 Standard reduction

Input: Boundary matrix D

Output: Reduced matrix R

1 R = D

2 for j = 1, . . . , N

3 while piv (Rj′) = piv (Rj) ̸= 0 for j′ < j

4 add Rj′ to Rj

2.2 Filtered simplicial complex and boundary matrix
We apply matrix reduction on a class of matrices that arise from computational topology.

A simplicial complex K over a finite set V is a collection of subsets (called simplices) of
V closed under inclusion, i.e. with the property that if σ ∈ K and τ ⊂ σ, also τ ∈ K. A simplex
with (k + 1)-elements is called k-simplex and its dimension, dim(σ), is k. The dimension
of K is the maximal dimension of its simplices. For k = 0, 1, 2 the terms vertices, edges,
and triangles are also used, respectively. For a k-simplex σ ∈ K, we call a (k − 1)-simplex τ

with τ ⊂ σ a facet of σ. The set of facets of σ is called its boundary.
A simplexwise filtered simplicial complex is a sequence of nested simplicial complexes

∅ = K0 ⊆ · · · ⊆ KN = K such that Ki \ Ki−1 = {σi} for all i = 1, . . . , N . We denote the
dimension of a simplex σi by di. The boundary matrix D of a filtered simplicial complex
is the (N × N)-matrix such that Di

j = 1 if σi is a facet of σj , and 0 otherwise. In other
words, the j-th column of D encodes the boundary of the j-th simplex of the filtration. Note
that the boundary of a k-simplex consists of exactly k + 1 facets, so under the reasonable
assumption that the maximal dimension of a simplicial complex is a small constant, D has
only a constant number of nonzero entries in each column.

2.3 Persistence pairs
Matrix reduction on boundary matrices reveals topological properties of the underlying
filtered simplicial complex. We use standard notations for the necessary concepts that
originate from (persistent) homology theory. We also informally describe their topological
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meaning, although no deeper understanding of these concepts is required for the results of
the paper.

Fixing a filtration boundary matrix D, matrix reduction yields a collection of pivot pairs
(i, j). The corresponding pair of simplices (σi, σj) is called a persistence pair. For a
persistence pair, dim(σj) = dim(σi) + 1. Informally, the meaning of a persistence pair is that
when σi is added to the filtered simplicial complex (at step i), it gives rise to a new “hole”
in the complex (more precisely, a homology class). This hole disappears when σj enters
the filtered simplicial complex (e.g., σj fills up that hole). For formal definitions of these
concepts, see [14, Sec. VII].

Pivot pairs of boundary matrices have special properties that are not true for other types
of matrices: first of all, every pivot pair (i, j) satisfies i < j, because a filtration boundary
matrix is necessarily upper-triangular, and this property is preserved by matrix reduction.
Moreover, every index j appears in at most one pivot pair: this is based on the fact that
inserting a k-simplex into a simplicial complex either creates a homology class in dimension
k or kills a homology class in dimension k − 1 [14, Pag. 154, see also Sec. V.4]. This allows
us to classify simplices of the filtered simplicial complex into three types: we call a simplex
positive if it appears as the first entry in a persistence pair, negative if it appears as the
second entry in a persistence pair, and essential if it does not appear in any persistence
pair. In topological terms, essential simplices create a hole that is not filled up during the
course of the filtration.

In what follows, we blur the difference between pivot pairs (of indices) and persistence
pairs (of simplices) and identify σi, its index i in the filtration, and the i-th column/row of the
filtration boundary matrix. Hence, whenever convenient, we also talk about positive/negative
indices and rows/columns.

2.4 Clear and compress

The special structure of boundary matrices allows for simple but effective speedups of matrix
reduction. We describe two speedup heuristics that are relevant in this work, discussed
extensively in [3]. Both are based on the observation that every index appears in at most
one pivot pair.

For the first heuristic, let us fix a negative index i and a column Dj with Di
j ̸= 0. It is

then easy to see that i cannot become the pivot of Dj during the reduction process (because
then, either Dj itself or another column must end up with i as the pivot, contradicting the
assumption that i is negative). Hence, we can simply remove the index i from Dj without
changing the pivot pairs. We call the process of removing all negative row indices from a
column compressing a column. For the second heuristic, let us fix a positive index i and
consider its column Di. It can be readily observed that in the reduced matrix, Di cannot
have a pivot because that would imply that i is negative. Therefore, Di can just be set to
zero without changing the pivot pairs. We call this step clearing a column.

Note that to make use of clearing, the simplices of the simplicial complex have to be
processed in decreasing dimensions; we refer to this variant of matrix reduction with clearing
as twist reduction; the pseudocode can be obtained from Algorithm 2 by removing Lines 6
and 7. On the other hand, using compression requires proceeding in increasing dimensions, so
clear and compress mutually exclude each other, except for more sophisticated approaches [3].
As shown in [5], the twist reduction has a very satisfying practical performance and is the
default choice in the PHAT library.

CGT



6:6 Keeping it sparse

2.5 Column representations
A crucial design choice when implementing matrix reduction is how to store the columns
of the matrix. Since boundary matrices are initially sparse, and usually do not fill up
too much in the reduction process, a dense vector over Z2 is a bad choice for its memory
consumption. A data structure whose size is proportional to the number of nonzero entries
in a column is preferred. A natural choice is to simply store the indices of nonzero entries
in a sorted dynamic array (vector). Adding two such columns requires a merge of the two
arrays canceling double-occurrences and is therefore proportional to the combined size of
both columns. Storing the indices in heap order instead, we can realize the addition of Mi

to Mj by inserting every entry of Mi into the heap of Mj which is possible in logarithmic
time per entry in Mi. This approach does not eliminate double-occurrences of entries, but
their removal can be delayed to a later point when either a pivot is queried or sufficiently
many operations have been performed on a column such that a linear scan of the heap is
affordable. Using such a “lazy-heap”, the amortized cost of adding Mj to Mi is proportional
to the size of Mi plus logarithmic overhead. We remark that sorted linked lists and balanced
binary search trees can be used instead of vectors and heaps, respectively, to obtain similar
performance guarantees in theory, but these data structures suffer from the lack of locality
in storing the data which results in many cache misses and makes them significantly slower
in most application scenarios.

Furthermore, while storing the non-zero indices of a column as a vector (or heap) is an
efficient choice, it can be worthwhile to transform a column to a different data structure when
reducing it. For instance, while storing every column as 0-1-vector is prohibitive because
of the memory consumption, it can be beneficial to “expand” the dense array of non-zero
indices to a long array of 0, and 1, perform column additions on this column, and transform
it back into a dense column once the column is reduced. An alternative is to use a lazy heap
solely for the column to be reduced, and sorted arrays for all other columns.

The software library PHAT [5] implements the all aforementioned data representations
and several additional ones – we refer to the paper for more extensive explanations of the data
structures. We emphasize that the performance of matrix reduction depends not only on the
reduction algorithm but on combining that algorithm with a suitable column representation;
see [5, Tables 1 and 4].

2.6 Dualization
Given a simplex σ, the collection of all the simplices that have σ as a facet is the coboundary
of σ. As we did for the boundary, we can define the filtration coboundary matrix. The
crucial observation is that the two matrices are (almost) anti-transposes of each other, and
their pivot pairs are in bijection. We do not enter the details here, referring to [12] for the
precise statements, but this observation has important consequences in practice. As already
observed [5, 34], it is much faster to reduce the coboundary matrix than the boundary
matrix for some inputs, in particular, for Vietoris–Rips filtrations. An explanation of this
phenomenon is given in [2]. Anti-transposing the matrix is called the dualization process,
and it adds another degree of freedom when comparing the efficiency of the reductions.

3 Sparsification variants

The Pairing Lemma [14, Pag. 154] shows that the presence of a pivot pair (i, j) is related to
an inclusion-exclusion formula of ranks of D[≥ ∗,≤ •], submatrices of D given by the last ∗



Bauer, Bin Masood, Giunti, Houry, Kerber, Rathod 6:7

rows of the first • columns. It is usually used to prove the correctness of Algorithm 1, but it
is much more general, as it implies:

▶ Corollary 1. Any matrix reduction algorithm that preserves the ranks of the submatrices
D[≥ i,≤ j], for all i, j ∈ {1, . . . , N} is a valid barcode algorithm.

In other words, any reduction whose operations do not alter the ranks of lower-left
submatrices will result in the same barcode decomposition.

Proof. Consider a reduction algorithm satisfying the hypothesis, and assume it obtains the
pivot pair (i, j). By the Pairing Lemma, (i, j) is a pivot pair if and only if rank (D[≥ i,≤ j])−
rank (D[≥ i + 1,≤ j]) + rank (D[≥ i + 1,≤ j − 1]) − rank (D[≥ i,≤ j − 1]) = 1. Since all
these ranks are preserved by the reduction, the claim follows. ◀

Notably, this interpretation of matrix reduction generalizes the common assumption that
the reduced matrix R is obtained from the original boundary matrix D by left-to-right column
additions, or equivalently, by multiplication with an invertible rank upper-triangular matrix.
While this restriction ensures that the reduction data determines a decomposition of the
filtered chain complex (see, e.g., [2, 16]), the above observation shows that a weaker condition
is sufficient if one is only interested in the barcode itself and not in the representative cycles
or cocycles. This insight opens the possibility of many new variants of the barcode algorithm
that go beyond the use of left-to-right column additions. We now present some that try to
keep the matrix sparse during the reduction.

3.1 Swap reduction
Our first major variant is based on the following simple idea: assume that the standard
algorithm adds column Ri to Rj (hence i < j and Ri and Rj have the same pivot). Before
doing so, we can check first whether Rj has fewer entries than Ri; in this case, we swap
columns Ri and Rj first and perform the addition afterward (which still results in replacing
Rj with Ri + Rj). This swap is not only profitable in the column additions performed in
this step, but also in every later column addition that involves column Ri.

We call this variant the swap reduction. This variant appeared in Schreiber’s PhD
Thesis [36, p. 77] as a tool to control the size of the boundary matrix in a theorem on
average complexity of matrix reduction; see also [27]. The first indications of its practical
performance appeared in [35]. We also point out that the swap reduction can easily be
combined with the clearing optimization; see Algorithm 2 for the pseudocode for this variant.

For correctness, assume that columns 1, . . . , i− 1 are already reduced and that column i

has the same pivot of a previous column, call it i′. Then the ranks of all lower-left submatrices
up to i are unchanged if we swap i and i′. The correctness follows from Corollary 1.

3.2 Exhaustive reduction
We review the exhaustive reduction, discussed in [17], even if the idea was already present
in [18, 41]. The idea is that after the pivot of the reduced matrix has been identified,
further (left-to-right) column additions are performed to eliminate nonzero entries with
indices smaller than the pivot. Note that this algorithm produces the lexicographically
smallest possible representative for the column given by left-to-right column additions. We
omit the pseudocode for brevity (see [17]). The exhaustive reduction is combined with
the compress-optimization (i.e. removing negative entries from a column before processing

CGT



6:8 Keeping it sparse

Algorithm 2 Swap reduction

Input: Boundary matrix D of a simplicial complex of dimension d

Output: Reduced matrix R

1 R = D

2 for δ = d, d− 1, . . . , 0
3 for j = 1, . . . , N

4 if Rj has simplex-dimension δ

5 while piv (Rj′) = piv (Rj) ̸= 0 for j′ < j

6 if #Rj < #Rj′

7 swap Rj and Rj′

8 add Rj′ to Rj

9 if Rj ̸= 0
10 Set Ri to 0 for i = piv (Rj)

it) [41]. In this way, the exhaustive reduction guarantees that the number of nonzero entries
in Rℓ after reduction is at most the number of homological classes in Kℓ.

3.3 Retrospective reduction

Our second major variant is the retrospective reduction, based on the idea of using
(previous and subsequent) pivots to eliminate entries in a column when it needs to be added.
An entry in Ri

k is unpaired at ℓ if there does not exist a pivot pair (i, j) with j ≤ ℓ, and
paired at ℓ otherwise. Whenever we add a column Rℓ to Rk, we first update Rℓ by removing
through appropriate column additions all entries that have been paired meanwhile. Note
that, if the addition of Rm to Rℓ is needed for this purpose, then Rm has to be updated
first, so the step is recursive. The recursion stops because the pivot of a column is strictly
decreasing in every recursive call. Since these right-to-left column additions involve only
entries whose index is smaller than the pivot in the respective column, none of them changes
the rank of any lower-left submatrix. Therefore, this reduction is correct by Corollary 1.

The retrospective algorithm has the property that whenever Rj gets added to another
column during iteration k, its size is at most the number of homological classes persisting
from j to k (see Lemma 5). That is, it tries to sparsify columns “that matter”, i.e. the
columns that get added to other columns.

3.4 Representative cycles

A representative cycle is a set of simplices that loop around a hole in the complex, and
its computation is often of interest, in addition to the one of the associated persistence
pair [2, 13, 23, 29, 33]. In the standard algorithm, at the end of the reduction, the nonzero
column providing the persistence pair (i, j) encodes such a representative cycle directly; this
is not true in the swap and in the retrospective reductions. However, it holds that during
the execution of either algorithm, once the persistence pair (i, j) is identified (i.e., before
any swapping of column j or any right-to-left column additions on column j), the column
represents a valid representative for the homology class. So, while the representatives are
not encoded in the final matrix, they can be stored with little extra effort.
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Algorithm 3 Retrospective reduction

Input: Boundary matrix D

Output: Reduced matrix R

1 Procedure Main(D)
2 R = D, P = ∅
3 for j = 1, . . . , N

4 Remove the negative entries from Rj

5 Reduce(j)

6 Procedure Reduce(j)
7 while ∃ paired entries in Rj

8 Let ℓ be the largest index for which Rℓ
j is paired

9 Add Reduce(P [ℓ]) to Rj

10 if Rj ̸= 0
11 P [Pivot(Rj)]← j

12 return Rj

3.5 Further variants

There are numerous alternatives to obtain reduced columns of (potentially) smaller size. We
mention two more variants: recall that the exhaustive algorithm performs a sequence of
further column additions after the pivot has been determined. In this process, it computes a
sequence of columns c1, . . . , cr, all with the same pivot and therefore being valid choices for
the reduced matrix. In the mixed strategy, we simply remember which column has the
smallest size and use its reduced column. Since this variant “locally” improves the size of a
reduced column compared to both the standard and exhaustive variant, one could hope that
the mixed strategy improves on both of them.

A (perhaps obvious) further variant is to compute the column with the smallest size
among all possible alternatives. This problem can be re-phrased as follows. Given a vector W

and n vectors U1, . . . , Un in Zm
2 , find a1, . . . , an in Z2 such that W + a1U1 + · · ·+ anUn has

the minimum number of nonzero coefficients. This problem is called the Nearest Codeword
Problem (NCW), which is known to be NP-hard and NP-hard to approximate within any
constant factor [1]. For completeness, we show a simple reduction from MaxCut.

▶ Proposition 2. NCW is NP-hard.

Proof. Let G = (V, E) be a graph, with set of vertices V = (v1, . . . , vn) and edges E =
(e1, . . . , em), and M(G) ∈ Zm×n

2 its vertex-edge incidence matrix. Set W = [1, . . . , 1], and
U1, . . . , Un as the columns of M(G). Given a1, . . . , an ∈ Z2, let W ′ = W + a1U1 + · · ·+ anUn.
For ej = (vi, vk), we have that W ′[j] = 0 if and only if ai = 0 and ak = 1, or ai = 1 and
ak = 0. Therefore, setting A = {i : ai = 0} and B = {i : ai = 1}, we have

|{j : W ′[j] = 0}| = |{e = (vi, vk) ∈ E : (i ∈ A ∧ k ∈ B) ∨ (k ∈ A ∧ i ∈ B)}|

Thus, maximizing the number of zeros of W ′ is equivalent to finding a maximum cut of G,
so we can reduce MaxCut to NCW, establishing the NP-hardness of NCW [26]. ◀

CGT



6:10 Keeping it sparse

4 Experiments

We have implemented our new algorithmic variants (swap, retrospective, and mix) as an
extension of the publicly available PHAT library [5]. We also implemented the exhaustive
reduction for comparison. All our algorithms are implemented such that they can be combined
with any of the data structures provided by PHAT (which required minor extensions of the
interface), and are included in version 1.7 of the library. Moreover, we included a branch
called keeping_it_sparse_experiments that contains further modifications and test scripts
required to reproduce the experiments of this section. Finally, the datasets that were used in
our experiments together with the required scripts to produce them are available in a public
repository [8].

We address three questions in our experimental evaluation:
To what extent do our novel approaches really sparsify the reduced boundary matrix, and
does this sparsification lead to a reduction in the number of matrix operations performed?
What are the most appropriate data structures to represent columns for our novel
approaches?
How do the best combinations perform in comparison with the default options of PHAT?

For our tests, we ran our experiments on a workstation with an Intel Xeon E5-1650v3 CPU
and 64 GB of RAM, running Ubuntu 18.04.6 LTS, with gcc version 9.4.0 and optimization
flags -O3 -DNDEBUG. The implementation is not parallelized.

4.1 Datasets
We cover different types of filtered simplicial complexes to investigate the performance in a
broader context. In particular, we used Vietoris–Rips filtrations of high-dimensional point
clouds, taken from the benchmark set in [34] (in all cases, we restricted to the 2-skeleton
without imposing a limit on the edge length), we generated alpha shape filtrations of
random points clouds on a cube, a swissroll and a torus (generated with [37]) and lower
star filtrations generated from publicly available three-dimensional scalar fields [11]. The
latter are not simplicial but cubical complexes – all concepts in this paper carry over to this
case without difficulty.

We also include the shuffled filtration: it is obtained by adding n vertices, then all
(

n
2
)

edges in random order, and finally all
(

n
3
)

triangles in random order. Such filtrations tend to
perform significantly more column operations than the standard examples. Therefore, we
consider them as a “stress-test” for challenging reduction tasks that have recently shown
up in the context of image persistence [7] and two-parameter persistence computation using
cohomology [6].

4.2 Sparsity and bitflips
We examine the number of nonzero entries of each variant’s final reduced boundary matrices,
called the fill-in. Moreover, we count the number of column additions for each variant to see
the effect on efficiency. For a more detailed picture, we also count the number of bitflips of
the algorithm: when adding a column Rk to Rℓ, the size of Rk equals the number of entries
in Rℓ that needs to be flipped, and the number of bitflips is the accumulated number of
such flips over all column additions. We remark that the name “bitflip” is a slight abuse,
as it refers to a model where each boundary matrix entry is stored as 1 bit, which is not
necessarily what happens in practice, but it is nevertheless a descriptive name, which is
why we chose it. We expect the number of bitflips to be a good indicator of the practical
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Cube Swissroll Torus

Algorithm fill-in Col.ops Bitflips fill-in Col.ops Bitflips fill-in Col.ops Bitflips

twist 0.56M 55,613 0.23M 0.62M 40,257 0.15M 1.10M 0.10M 0.50M
twist∗ 0.95M 45,019 0.66M 1.16M 41,285 0.74M 1.95M 39,186 1.05M
swap 0.56M 55,560 0.22M 0.62M 40,243 0.14M 1.08M 0.10M 0.47M
swap∗ 0.85M 44,547 0.54M 1.02M 41,293 0.61M 1.74M 39,184 0.84M
retro 0.17M 0.52M 0.76M 0.20M 0.59M 0.87M 0.31M 1.03M 1.39M
retro∗ 0.16M 0.38M 0.45M 0.18M 0.42M 0.47M 0.36M 0.72M 0.98M
exhaust 0.19M 0.81M 1.42M 0.21M 0.99M 1.69M 0.32M 1.67M 2.68M
exhaust∗ 0.20M 0.42M 0.60M 0.21M 0.45M 0.56M 0.38M 0.82M 1.22M
mix 0.18M 1.08M 1.97M 0.21M 1.35M 2.41M 0.32M 2.27M 3.89M
mix∗ 0.20M 0.56M 0.88M 0.21M 0.57M 0.79M 0.38M 3.07M 5.72M

Random 50 Random 100 Senate

Algorithm fill-in Col.ops Bitflips fill-in Col.ops Bitflips fill-in Col.ops Bitflips

twist 3,728 0.28M 0.91M 14,975 5.35M 19.02M 15,683 1.66M 5.05M
twist∗ 62,780 101 6,514 0.51M 222 38,342 0.54M 124 24,729
swap 3,691 0.27M 0.85M 14,887 5.19M 17.29M 15,673 1.66M 5.00M
swap∗ 62,420 101 6,154 0.51M 224 33,830 0.54M 124 16,655
retro 1,274 57,677 60,124 5,049 0.48M 0.49M 5,355 0.53M 0.54M
retro∗ 0.29M 2,466 0.62M 6.41M 9,944 14.32M 1.66M 10,421 3.38M
exhaust 1,326 61,555 67,968 5,172 0.51M 0.55M 5,377 0.54M 0.56M
exhaust∗ 0.28M 2,503 0.63M 5.36M 10,025 13.67M 1.66M 10,430 3.40M
mix 1,326 64,008 72,874 5,172 0.52M 0.57M 5,377 0.55M 0.59M
mix∗ 58,693 22,753 1.12M 0.49M 0.22M 21.84M 0.52M 0.19M 18.83M

Nucleon Fuel Tooth

Algorithm fill-in Col.ops Bitflips fill-in Col.ops Bitflips fill-in Col.ops Bitflips

twist 1.52M 0.26M 1.22M 30.15M 13.29M 53.28M 34.70M 4.90M 29.43M
twist∗ 1.55M 0.33M 2.19M 31.56M 13.86M 89.69M 33.18M 4.92M 30.07M
swap 1.51M 0.27M 1.23M 30.14M 13.29M 53.28M 33.61M 4.83M 26.79M
swap∗ 1.45M 0.31M 1.71M 24.94M 13.21M 78.44M 31.59M 4.86M 27.15M
retro 0.41M 1.04M 2.16M 1.51M 16.73M 49.55M 8.13M 21.51M 34.70M
retro∗ 0.30M 1.00M 1.41M 1.03M 16.09M 29.64M 7.35M 21.94M 31.73M
exhaust 0.59M 1.28M 3.15M 14.89M 30.53M 106.36M 11.07M 27.03M 52.18M
exhaust∗ 0.53M 1.25M 2.21M 14.31M 29.13M 69.12M 11.05M 28.55M 53.08M
mix 0.46M 10.89M 22.25M 2.25M 111.02M 260.13M 10.85M 120.02M 239.17M
mix∗ 0.43M 3.79M 7.40M 2.02M 48.46M 108.28M 10.79M 76.24M 150.20M

Table 1 Fill-in, number of column operations and number of bitflips for (top) alpha shapes
filtrations of 10000 points, sampled respectively from a cube, a swissroll, and a torus in R3, generated
using [37] (each value is the average of 5 random samplings from each shape); (middle) a Vietoris–
Rips filtration up to degree 2 of 50 random points in R16, 100 random points in R4, and 102 points
in R60 of the senate dataset (taken from [34]); (bottom) the lower star filtrations of the nucleon
(41 × 41 × 41 voxels, 68 KB), fuel (64 × 64 × 64 voxels, 256 KB), and tooth (103 × 94 × 161 voxels,
1.5 MB) image from [11]. “M” stands for millions, ∗ for the dualized matrix. The best performance
in each column is in bold.

performance of an algorithm, as the bulk of the running time of matrix reduction is usually
spent on column additions.
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50 points 75 points 100 points

Algorithm fill-in Col.ops Bitflips fill-in Col.ops Bitflips fill-in Col.ops Bitflips

twist 13,933 1.48M 40.61M 56,424 12.13M 794.68M 0.16M 53.91M 6,459.57M
twist∗ 1.10M 11,510 21.07M 9.58M 58,050 497.59M 44.11M 184,441 4,532.40M
swap 3,799 0.74M 3.41M 8,610 4.36M 28.19M 15,401 15.81M 154.84M
swap∗ 0.57M 8,283 9.06M 5.05M 39,071 249.32M 22.49M 0.12M 2,334.65M
retro 1,274 81,191 0.28M 2,849 0.34M 3.28M 5,049 0.97M 20.89M
retro∗ 3.81M 15,563 70.71M 32.70M 76,790 1,582.02M 147.23M 0.25M 13,599.27M
exhaust 12,735 1.10M 22.16M 60,825 9.58M 507.11M 0.19M 44.10M 4,576.32M
exhaust∗ 1.48M 12,708 39.14M 12.13M 53,649 782.60M 53.92M 0.16M 6,405.81M
mix 8,278 1.38M 23.00M 35,264 11.48M 520.24M 0.11M 51.59M 4,681.67M
mix∗ 1.07M 30,183 36.07M 9.43M 0.15M 741.30M 43.60M 0.45M 6,151.18M

Table 2 Fill-in, number of column operations, and number of bitflips for the shuffled filtrations
on 50, 75, and 100 points. Each value is the average of 5 iterations. “M” stands for millions, ∗ for
the dualized matrix. The best performance in each column is in bold.

The choice of the column representation has no influence on this experiment. On the
contrary, the number changes dualizing the input matrix. Therefore, we tested each algorithm
both on the primal and on the dual matrix.

Tables 1 and 2 show the outcome for one instance per filtration type. We can see that
swap reduction consistently leads to smaller reduced matrices and also reduces the number of
column operations and bitflips, compared to twist reduction (with the exception of dualized
Vietoris–Rips filtrations, where the number of column operations is very small), although
the difference is sometimes marginal. For most datasets, we can see that the retrospective,
followed closely by the mix, outputs much sparser matrices, with the notable exception of
dualized Vietoris–Rips. However, the number of column operations and bitflips generally
does not decrease. The exhaustive reduction is also producing similarly sparse matrices, but
for shuffled filtrations. However, the number of bitflips seems to be generally higher than for
the retrospective. Note that in some examples, the ratio of column operations and bitflips for
exhaustive and retrospective is close to one (e.g., in the middle part of Table 1), meaning that
the majority of column operations add columns with a single non-zero entry. This shows that
the compression strategy is particularly beneficial for these instances. Finally, the numbers
indicate that mix reduction is not a successful strategy: even if it manages to obtain sparse
reduced matrices, often sparsifying comparably to the retrospective, it requires many more
column operations and many more bitflips (to an extent that surprised the authors).

Hence, our novel variants do improve sparsity quite consistently, but this does not
automatically lead to improved performances. According to these experiments, there is no
direct correlation between sparser matrices and fewer bitflips.

4.3 Data structures
We consider the runtime next. In particular, we look at the influence of the column
representation on the performance of the algorithm. For that, we run each of our algorithms
with each of the 8 available representations in PHAT (we refer to [5] for an extensive
description of the data structures). We show the running times for an alpha shape filtration
and a Vietoris–Rips filtration in Table 3, for a lower star filtration and shuffled filtration in
Table 4. Note that these tables show only the running time for the matrix reduction; the
time to read the input file into memory and to (potentially) dualize the matrix (both of
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which usually take more time than the reduction itself) is not shown.

List Vector Set Heap A-Heap A-Set A-Full A-Bit-Tree
twist 0.3 0.1 0.2 0.2 0.2 0.2 0.2 0.1
twist∗ 7.2 0.3 0.6 0.4 0.4 0.5 0.3 0.2
swap 0.3 0.1 0.2 0.4 0.4 0.2 0.2 0.4
swap∗ 9.4 0.3 0.6 21.4 10.0 0.5 0.3 5.5
retro 0.7 0.6 0.8 1.0 0.7 0.7 0.7 0.7
retro∗ 0.7 0.5 0.8 0.8 0.6 0.6 0.6 0.6
exhaust 0.7 0.5 0.9 0.8 0.8 0.7 0.7 0.7
exhaust∗ 0.7 0.4 0.7 0.6 0.6 0.6 0.5 0.5
mix 0.9 0.6 1.1 1.0 1.0 1.0 1.0 1.0
mix∗ 0.8 0.5 1.0 0.8 0.8 0.7 0.8 0.8

List Vector Set Heap A-Heap A-Set A-Full A-Bit-Tree
twist 3.9 1.5 3.4 3.8 3.5 3.5 2.2 2.4
twist∗ 0.7 0.1 0.1 0.3 0.1 0.2 0.1 0.1
swap 4.0 1.6 3.4 5.1 4.1 3.6 2.5 9.0
swap∗ 0.8 0.1 0.1 1.2 0.8 0.2 0.1 0.5
retro 1.7 1.4 1.9 3.3 2.0 2.5 1.8 2.0
retro∗ 73.9 6.1 42.8 155.8 191.7 237.3 120.6 38.7
exhaust 1.3 0.9 1.5 1.8 1.7 1.4 1.3 1.5
exhaust∗ 46.0 1.7 12.1 13.5 12.6 11.7 5.7 2.3
mix 1.3 0.9 1.4 1.8 1.4 1.4 1.4 1.4
mix∗ +5m 186.1 81.1 +5m +5m 65.0 20.5 +5m

Table 3 (Top) Alpha filtrations on 40,000 points on a cube, average reduction time over 5 random
samplings. (Bottom) Vietoris–Rips filtration, 297 points in ambient dim 202 up to degree 2 (celegans
dataset from [34]). All timings are in seconds but for the timeout (minutes), ∗ stands for the dualized
matrix, and the best runtime(s) per algorithm (both over primal and dual input) is in bold.

First of all, the tables confirm the earlier findings in [5]: the performance of the twist
algorithm highly varies depending on the chosen data structure, and the best results are
achieved using the A-Bit-Tree representation, which is also the default in PHAT. Moreover,
for Vietoris–Rips filtrations, it is highly beneficial to dualize the matrix.

The swap reduction generally performs similarly to twist, working fast with dualization
on Vietoris–Rips complexes. Remarkably, it performs much better if run with A-Full on the
lower star filtration. Swap is generally slower on the data structures Heap, A-Heap, and
A-Bit-Tree. The explanation lies in the way how we use these data structures to represent
columns, which does not permit a constant-time access to the size of a column. As the size is
queried before every column addition, this results in a considerable slow-down for the swap
algorithm.

We observe that the performance for the retrospective algorithm seems more stable across
different data structures than for other algorithms on alpha and lower star filtrations. We
speculate that the reason for this general stability is the general sparsity of the columns,
which reduces the importance of how the entries are stored in memory. We also observe
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List Vector Set Heap A-Heap A-Set A-Full A-Bit-Tree
twist +5m 12.9 3.0 3.0 3.0 3.4 2.3 2.0
twist∗ +5m +5m 4.8 4.8 4.0 4.2 2.5 1.9
swap +5m 12.9 2.8 +5m +5m 3.4 2.4 +5m
swap∗ +5m +5m 4.8 +5m +5m 4.2 2.6 +5m
retro 5.6 4.7 6.2 9.1 6.9 7.2 6.6 7.1
retro∗ 6.8 4.9 7.1 9.4 7.2 7.7 7.0 7.5
exhaust 5.8 4.1 6.7 6.6 6.9 6.6 5.9 6.3
exhaust∗ 7.8 4.7 8.4 7.1 7.3 7.2 6.3 6.7
mix 14.0 9.0 15.8 15.6 16.2 15.6 13.9 18.6
mix∗ 14.0 8.1 15.2 13.8 13.4 13.0 11.7 14.5

List Vector Set Heap A-Heap A-Set A-Full A-Bit-Tree
twist 28.6 6.8 58.2 59.4 54.8 46.8 6.8 2.1
twist∗ 47.4 4.4 69.2 55.9 52.6 41.1 4.7 1.3
swap 2.8 0.5 2.4 6.9 4.9 1.7 0.6 3.4
swap∗ 28.3 1.9 38.0 86.5 56.0 22.9 6.7 14.2
retro 0.2 0.1 0.3 0.7 0.6 0.7 0.4 0.2
retro∗ 100.1 17.2 257.9 432.7 452.0 420.5 271.6 55.7
exhaust 17.8 4.4 36.6 36.4 33.8 29.3 4.4 1.4
exhaust∗ 51.9 6.5 85.6 87.5 82.7 64.5 8.0 2.2
mix 20.5 4.8 37.8 37.8 35.0 30.3 4.8 1.7
mix∗ 143.4 7.9 117.8 211.9 158.0 65.4 89.2 29.7

Table 4 (Top) Lower star filtration for the tooth image from [11] (104 × 91 × 161 voxels, 1.5 MB).
(Bottom) Average reduction times for 5 iteration of a shuffled filtration on 75 points. All timings are
in seconds but for the timeout (minutes), ∗ stands for the dualized matrix, and the best runtime per
algorithm (both over primal and dual input) is in bold.

that it sometimes, but not always, improves on the exhaustive algorithm. Remarkably, the
retrospective is competitive in practice (for example, on the alpha filtration) even if it is not
implemented with the clearing optimization, but uses the compress optimization instead. We
are not aware of other variants with this characteristic.

As expected from Tables 1 and 2, the mix algorithm generally has the poorest practical
performance among all tested algorithms. We therefore leave it out in further comparisons.

Based on our experiments, we identified that twist works most efficiently in combination
with A-Bit-Tree (as previously known), and the retrospective and the exhaustive algorithms
work best with the Vector representation but for the shuffled filtrations, where exhaustive
should be paired with A-Bit-Tree. The swap reduction sometimes works best with Vector
and sometimes with A-Full. Since the advantage of A-Full was generally more significant, we
chose A-Full for subsequent experiments.

4.4 Performance on large datasets

We now compare the performance on larger instances. We focus on the combinations that
were identified to be most efficient in the previous experiments. We run each algorithm on
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the original matrix and its dual and pick the better of the two runtimes.
The results are displayed in Table 5. We observe that retrospective is systematically by

1 or 2 orders of magnitude better than twist for shuffled, and worse by one or two orders
of magnitude for Vietoris–Rips filtrations. Also, it is interesting that whenever twist is
faster after dualizing, retrospective is faster without dualization and vice versa. We observe
that swap is always as fast or slightly slower than the twist on the first three filtrations.
It is decidedly faster only on shuffled filtrations; however, it is not as fast as retrospective.
Moreover, swap and twist mostly perform better on the same type of matrices: original for
alpha shape and lower star filtrations, and dual on Vietoris–Rips. Remarkably, swap performs
better on shuffled filtrations without dualization, unlike the twist reduction. Interesting is
the case of lower star filtrations: while here it is clear that swap and exhaustive are not the
best performing, it is more difficult to choose between twist and retrospective. Indeed, while
retrospective is generally better than twist, sometimes the latter takes only half the time.
This behavior does not correlate with the input sizes. We theorize that it depends on the
number of short-lived bars: when there are more, the sparsification of the retrospective pays
off (as it happens in the bonsai image), while when there are fewer, like in the skull image,
it does not. Finally, the exhaustive scales as retrospective on alpha shape filtrations but is
slower by two orders of magnitude on the shuffled filtration. Moreover, exhaustive performs
slightly better than retrospective on Vietoris–Rips filtrations, even if not as good as swap
and twist.

In general, we see that our variants keep the matrix sparse for the shuffled filtration and
this leads to a significant improvement in efficiency. Likely, this happens because, in the
reduction of random filtrations, each column is added several times. Thus, keeping it sparse
pays off.

4.5 Memory consumption

We also tested the memory peak consumption of the algorithms (Table 6). For the alpha
shape filtrations, the twist and the swap are better than the retrospective and exhaustive. On
the other three filtrations, the exhaustive is generally better than any other algorithms. Twist
and swap are quite similar on alpha and Vietoris–Rips filtrations, but swap uses considerably
less memory on shuffled, possibly because it does not need to dualize. In these experiments,
the memory overhead for dualizing the input matrix is included in these numbers, which
might partially explain why the dualized instances usually take more memory.

4.6 Summary of the experiments

The experiments show that, while the sparsity of the matrix is a necessary condition for
efficiency, it is, perhaps surprisingly, not always a sufficient one. The general behavior appears
to be that the more structured the data, the less it pays off to sparsify.

For highly structured data, such as Vietoris–Rips and alpha filtrations, the price of
keeping the matrix sparse exceeds its advantages. Indeed, the only competitive sparsifying
algorithm in this situation is the swap algorithm, which does only a few extra operations
and does not sparsify aggressively.

On the other hand, for random data such as the shuffled filtration, sparsifying is a winning
strategy. In this situation, the retrospective, which tries most aggressively to sparsify the
matrix, is by two orders of magnitude faster than the twist, and the swap outperforms the
twist by one order of magnitude.
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Cube Swissroll Torus

Algorithm 40K 80K 160K 40K 80K 160K 40K 80K 160K

twist+A-Bit-Tree 0.1 0.3 0.8 0.1 0.2 0.5 0.2 0.4 0.8
swap+A-Full 0.2 0.4 0.9 0.1 0.2 0.5 0.3 0.6 1.5
retro+Vector ∗0.5 ∗1.2 ∗2.7 ∗0.5 ∗1.2 ∗2.7 ∗1.0 ∗2.3 ∗5.4
ex+Vector ∗0.4 ∗1.0 ∗2.3 ∗0.4 ∗1.0 ∗2.3 ∗0.8 ∗1.8 ∗4.2

Algorithm Hydrogen Shockwave Lobster MRI Head Engine Statue Leg Bonsai Skull

twist+A-Bit-Tree 12.3 12.2 25.8 13.8 54.5 53.9 177.9 24.2
swap+A-Full 17.3 15.3 37.8 14.9 74.3 71.0 264.4 25.0
retro+Vector ∗10.9 ∗10.4 ∗30.3 ∗30.3 ∗54.4 ∗50.8 ∗150.6 ∗62.4
ex+Vector ∗28.6 ∗21.9 ∗62.2 ∗29.3 ∗239.2 ∗102.5 ∗+5m ∗58.3

Vietoris–Rips Shuffled

Algorithm 297 300 445 512 1000 1000 100 125 150

twist+A-Bit-Tree ∗0.1 ∗0.1 ∗0.3 ∗0.5 ∗3.2 ∗3.0 ∗8.4 ∗39.2.5 ∗154.4
swap+A-Full ∗0.1 ∗0.1 ∗0.3 ∗0.8 ∗4.4 ∗3.6 2.7 8.1 23.4
retro+Vector 1.6 2.1 8.1 15.4 170.7 171.0 0.3 0.9 2.9
ex+Vector/A-Bit-Tree 0.9 1.2 4.8 9.3 121.2 119.5 10.8 50.0 192.8

Table 5 Running times (in seconds) on alpha shape filtrations on 40K, 80K, and 160K points
sampled from a cube, a swissroll, and a torus data sets, (top) and various data sets for the lower
star, Vietoris–Rips, and shuffled filtrations. The images are: hydrogen (128 × 128 × 128 voxels,
2 MB), shockwave (64 × 64 × 512, 2.0 MB), lobster (301 × 324 × 56 voxels, 5.2 MB), MRI head
(256 × 256 × 124 voxels, 7.8 MB), engine (256 × 256 × 128 voxels, 8 MB), statue leg (341 × 341 × 93
voxels, 10.3 MB), bonsai (256 × 256 × 256 voxels, 16 MB), and skull (256 × 256 × 256 voxels, 16.0
MB) from [11]. The Vietoris–Rips datasets are the celegans, vicsek 1, house, fractal linear edge, 1000
random points in R8, and dragon from [34], ordered by their numbers of points displayed at the top.
Each value for the shuffled filtration is the average over 5 samplings. The ∗ signals that the running
time was achieved using the dual matrix. The best performance per input is highlighted in bold.

Another emerging behavior is that exhaustive performs quite badly across all input data.
Possibly, this depends on the fact that while it does many operations, it keeps the matrix
less sparse than other sparsifying algorithms. In other words, it pays a price to sparsify but
the payoff is lower.

Last but not least, the experiments on the lower star filtrations indicate that the winning
strategy is to use either the twist or the retrospective, but there is no emerging trend
indicating when to use which. Even more, usually the retrospective is faster, but when it
is not it performs much worse than the twist. A possible explanation is that this depends
on the number of shorter bars: when there are more, and therefore more computation is
required, sparsifying pays off.

5 Output-sensitive bounds

The idea of the retrospective reduction is to keep reducing the columns-to-be-added using
the newly found pivots. This, together with the fact that pivots encode information about
persistence pairs, allows us to bound the number of bitflips with the persistence Betti
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Cube Swissroll Torus

Algorithm 40K 80K 160K 40K 80K 160K 40K 80K 160K

twist+A-Bit-Tree 0.10G 0.20G 0.40G 0.13G 0.26G 0.54G 0.23G 0.48G 1.01G
swap+A-Full 0.13G 0.25G 0.50G 0.16G 0.32G 0.67G 0.28G 0.60G 1.27G
retro+Vector ∗0.18G ∗0.35G ∗0.71G ∗0.23G ∗0.47G ∗0.97G ∗0.40G ∗0.86G ∗1.86G
exhaustive+Vector ∗0.18G ∗0.35G ∗0.71G ∗0.23G ∗0.47G ∗0.97G ∗0.40G ∗0.86G ∗1.86G

Algorithm Hydrogen Shockwave Lobster MRI Head Engine Statue Leg Bonsai Skull

twist+A-Bit-Tree 3.17G 3.20G 6.70G 5.78G 11.88G 13.44G 34.99G 12.02G
swap+A-Full 3.55G 3.56G 7.63G 7.16G 13.32G 15.33G 37.91G 14.94G
retro+Vector ∗9.16G ∗4.66G ∗9.11G ∗10.31G ∗15.65G ∗18.47G ∗42.06G ∗21.55G
ex+Vector ∗2.78G ∗2.84G ∗6.92G ∗10.31G ∗10.73G ∗13.68G ∗26.48G ∗21.55G

Vietoris–Rips Shuffled

Algorithm 297 300 445 512 1000 1000 100 125 150

twist+A-Bit-Tree ∗0.66G ∗0.68G ∗2.22G ∗3.41G ∗25.18G ∗25.18G ∗0.37G ∗1.09G ∗2.85G
swap+A-Full ∗0.76G ∗0.78G ∗2.54G ∗3.87G ∗28.82G ∗28.82G 22.51M 40.86M 72.05M
retro+Vector 0.45G 0.46G 1.50G 2.28G 16.93G 16.93G 31.47M 62.66M 118.13M
ex+Vector/A-Bit-Tree 0.35G 0.36G 1.15G 1.75G 13.05G 13.05G 19.17M 33.69M 56.10 M

Table 6 Memory peak consumption for the best-performing combination of algorithms, data
structures, and dualization. The ∗ signals that the running time was achieved using the dual matrix.
“G” and “M” stand for gigabyte and megabyte, respectively. The inputs are the datasets from
Table 5.

numbers. To prove the bounds, we group the column additions into complementary classes:
forward/backward, depending on if the addition is left-to-right or right-to-left, and non-/
interval, according to whether the column indices are outside or inside some persistence
interval. The first bound is then obtained by counting the bitflips from forward additions
directly and the ones from backward using interval additions. The second bound follows by
counting the bitflips from non-interval additions directly and the ones from intervals using
forward and backward additions.

Let us write P for the set of pivot pairs of a filtered simplicial complex and

P := P ∪ {(i, N + 1) | σi is essential} .

The Betti number βk for 1 ≤ k ≤ N is defined as βk := #{(i, j) ∈ P | i ≤ k < j}}.
The topological interpretation is that βℓ is the number of holes in the complex Kℓ. The
persistent Betti number βk,ℓ, for 1 ≤ k ≤ ℓ ≤ N is defined as

βk,ℓ := #{(i, j) ∈ P | i ≤ k, j > ℓ}

and gives the number of holes that are persistently present in all complexes Kk, . . . , Kℓ. In
Algorithm 3, Rk is pivoted after the procedure Reduce is invoked with k as the argument
in the for loop of the procedure Main.

▶ Observation 3. By construction of the Reduce procedure, for any step ℓ, after any
invocation of Reduce(j), the entries above piv (Rj) are unpaired at ℓ. In particular, after the
first invocation of Reduce(j), the number of entries above piv (Rj) is bounded above by βj.

The addition of Rk to Rℓ is called forward if k < ℓ and backward if k > ℓ. A forward
(resp. backward) bitflip is a bitflip resulting from a forward (backward) addition. Given
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(i, j) ∈ P and two integers k, ℓ, the bitflip of Ri
ℓ when adding Rk to Rℓ is an interval bitflip

if k, ℓ ∈ {i + 1, . . . , j}, and non-interval otherwise. For the retrospective algorithm, the
interval bitflips dominate the cost. Moreover, this cost can be bounded in terms of persistence
Betti numbers and index persistence.

▶ Observation 4. For every k = 1, . . . , N , the first iteration of Reduce(k) finds the pivot,
and the subsequent iterations perform only backward additions to Rk.

▶ Lemma 5. If k < ℓ and Rℓ is added to Rk, all the resulting bitflips are interval.

Proof. By Observation 4, if the addition of Rℓ to Rk flips the i-th entry, then i ≤ piv (Rk).
Thus, i < k < ℓ. For the other inequality, by Observation 3, it follows that when Rℓ is added
to Rk the entries in Rℓ are not paired with indices less than ℓ. ◀

▶ Lemma 6. Any two columns are added to each other at most once backward and at most
once forward.

Proof. Fix 1 ≤ k < ℓ ≤ N . Rk is added to Rℓ only once when Rℓ is being pivoted. Rℓ is
added to Rk only if ℓ is paired to j and Rj

k ̸= 0. Once Rj
k is eliminated from Rk, it is not

reintroduced, since j is now paired, and therefore Rℓ is added to Rk at most once. ◀

▶ Lemma 7. Let (i, j) be a pivot pair. Once Rj is pivoted, #Rj is always ≤ 1 + βi,j.

Proof. By Observation 3, immediately after Rj is pivoted, the entries above i = piv (Rj) are
unpaired at j, and hence #Rj ≤ 1 + βi,j . Subsequently, Rℓ is added to Rj only if ℓ > j and
piv (Rℓ) < i. Moreover, when Rℓ is added to Rj , by Observation 3, the entries above piv (Rℓ)
are unpaired at ℓ. Hence, #Rj ≤ 1 + βi,j is maintained in subsequent additions into Rj . ◀

As an immediate corollary, we have:

▶ Corollary 8. Let (i, j) ∈ P . The number of bitflips of an addition to or from Rj is ≤ 1+βi,j .

▶ Proposition 9. The total number of bitflips in Algorithm 3 is bounded by either of the
following sums:

∑
(i,j)∈P

(βi,j + 1)2 +
N∑

k=1
(dk + 1) (βk + 1) , (1)

∑
(i,j)∈P

(βi,j + 1) · {j − i + 1}+
N∑

k=1
(dk + 1) (βk + 1) . (2)

Proof. Fix a pivot pair (i, j). By Corollary 8, any additions involving Rj has at most 1 + βi,j

bitflips, giving a multiplicand of (1 + βi,j) inside the summation for the first term of bounds
(1) and (2).

The first term in bounds (1) and (2) is then obtained by bounding the number of backward
bitflips in two fashions: by bounding column additions into and from Rj , respectively.

1. We first bound how many columns are added to Rj . Since backward additions into Rj

are executed to zero out a formerly unpaired entry that is now paired, at most βi,j + 1
entries from Rj need to be zeroed out. Multiplying the bound on the number of added
columns to Rj with the bound on the number of bitflips from each column addition, and
then summing over all the persistence pairs gives the first term of (1).
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2. Next, we bound how many columns Rj is added to. By Lemma 5, Rj is added only to
columns Rℓ for i + 1 ≤ ℓ ≤ j − 1, and by Lemma 6, the backward additions happen at
most once. Again, multiplying the bound on the number of added columns Rj is added to
with the bound on the number of bitflips from each column addition, and then summing
over all the persistence pairs gives the first term of (2).

The second term in both bounds (1) and (2) accounts for forward bitflips. Fix ℓ < k. By
Observation 3, before Rℓ is added to Rk, #Rℓ ≤ 1 + βk. The paired entries in Rk before Rk

is pivoted is bounded by dk + 1. Hence, dk + 1 is the maximum number of columns that
need to be added to Rk to zero out, and each is added only once (Lemma 6). So, the total
number of forward bitflips in Rk is bounded by (dk + 1)(βk + 1). ◀

▶ Proposition 10. The total number of bitflips required to reduce D in Algorithm 3 is bounded
by

∑
(i,j)∈P

(j − i)2 +
N∑

k=1
(dk + 1) .

Proof. The two addends are bound, respectively, by the interval and non-interval bitflips.
Let (i, j) ∈ P . For i < k < ℓ ≤ j, by Lemma 6, the elements Ri

k and Ri
ℓ are added to

each other at most once. So, the total number of forward and backward interval bitflips in
row i is bounded by (j − i)2/2 each, and the first term follows.

By Lemma 5, all non-interval bitflips are forward bitflips. By Observation 3, if Rk is
added to Rℓ for k < ℓ, the entries above piv (Rk) are not paired until ℓ, and lead to interval
bitflips in Rℓ. As a result of adding Rk, the only non-interval bitflips in Rℓ occur in the row
index of piv (Rk). Since D is a boundary matrix, at the beginning every column k has at
most dk + 1 unpaired entries which need to be zeroed out, proving the claim. ◀

If we restrict the matrix D to the p-simplices of the complex, we obtain the p-dimensional
boundary matrix D(p). We then have a finer analysis of Proposition 10. The bound for the
number of bitflips required to reduce D(p) is∑

(i,j)∈P , dj=p

(j − i)2 + N(p + 1) .

Using Observation 3 and Lemma 5, the maximum number of entries in Ri for i = 1, . . . , N

during the course of the algorithm is di + βi + 1. Let βmax = maxi=1,...,N βi. Then the peak
memory consumption for Algorithm 3 is bounded by O(N(maxi di + βmax)).

6 Differentiating examples

Our experiments have shown that, in practice, retrospective and swap reductions have the
potential to run faster than twist. However, there exist constructions for which either of the
three mentioned algorithms performs asymptotically better than the other two. Specifically:

▶ Proposition 11. Let A ∈ {twist, swap, retrospective}. Then there exists an infinite family
of filtered simplicial complexes with increasing size n, such that the number of bitflips for
matrix reduction using A is bounded by O(n), where the number of bitflips for the other two
algorithms is Ω(n2).

We prove this statement by four constructions of filtered simplicial complexes with the
following properties:

CGT
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Complex K1 causes O(n) bitflips for retrospective, and Ω(n2) bitflips for twist and swap,
Complex K2 causes O(n) bitflips for twist and swap, and Ω(n2) bitflips for retrospective.
Complex K3 causes O(n) bitflips for swap, and Ω(n2) bitflips for twist.
Complex K4 causes O(n) bitflips for twist, and Ω(n2) bitflips for swap.

The statement follows directly from these 4 constructions.

e2

e3
e1

en+2

en+3

tn
tn+1en+1

t1

(a) Complex K1. (b) Complex K2.

Figure 1 Depiction of K1 and K2.

Each construction consists of two parts: the complexity study of the reduction of a specific
boundary matrix, and the existence of a simplicial complex realizing said boundary matrix.

Existence of simplicial complex K1. The complex is depicted in Figure 1a. We
start with a structure that we call an (open) wheel: it consists of n triangles incident to a
wheel center vertex such that subsequent triangles share an edge, but the first and last
triangles do not share an edge. The edges incident with the wheel center are called spoke
edges. The two that are part of only one triangle are called the initial and the final spoke
edge, respectively. The edges not-incident with the wheel center are called tire edges. We
enumerate these edges as follows: first the initial spoke edge, then all the tire edges along
the wheel starting with the one adjacent to the initial spoke, and finally all the remaining
spoke edges following the wheel starting with the spoke forming a triangle with the initial
spoke edge. We then sort the triangles following the wheel starting from the final spoke edge
(that is, in the opposite direction w.r.t. the spoke edges). Note that by design, the tire edges
are merging components in the filtration and are, therefore negative.

Next, we attach a fan of size n to the final spoke edge. This means we introduce n

additional vertices v1, . . . , vn and form n fan triangles, each joining one vi with the final
spoke edge. The two edges of a fan triangle, not being the final spoke edge, are called fan
edges. We call the fan edge incident to the center center fan edge, and the other one
outer fan edge. We sort the edges of the filtration by letting the center fan edges come
after the tire edges, followed by the outer fan edges, followed by the final spoke edge. Finally,
the fan triangles come after the wheel triangles.

Reduction complexity of K1. This construction yields a filtered simplicial complex
whose boundary matrix contains the matrix of Figure 2 as submatrix. Note that Figure 2 is
also a submatrix of the construction in [31]. The first half of the matrix contains a “staircase”
of columns with decrementing pivots. The staircase is of size 4 in Figure 2 but can easily be
extended to an arbitrary n in the obvious way. The second half consists of columns that all
have the same pivot, equal to the lowest step of the staircase. When reducing the matrix
(using the standard or twist algorithm), the reduction of each column in the second half
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wheel triangles fan triangles

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

...
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 1


Figure 2 (Sub)matrix of K1

causes the algorithm to add each column of the first half to it in order. In total, this causes a
quadratic number of column operations. The swap algorithm has the same complexity since
here no swapping happens.

The retrospective algorithm, however, sparsifies the first column before it gets added
to the second half. This simplification requires linear time (by one iteration through the
staircase) and results in a unit vector. In all additions to the second half, the cost is therefore
constant. This leads to linear complexity. It is important to note that the third nonzero
entry for the left-hand-side columns comes from a tire edge, which is negative. Hence, these
indices will be removed when reducing wheel triangles. Therefore, ignoring these indices, we
observe that indeed the first column turns into a unit vector. Reducing the fan triangles
with the retrospective algorithm thus results in removing the final spoke edge, which makes
the outer fan edge the pivot, and the reduction of the column stops after one bitflip.

It remains to be argued that the reduction of the edges in the filtration is linear as well
for the retrospective reduction. However, this is simple to see, putting an appropriate order
of the vertices in the complex. We omit the details.

Existence of simplicial complex K2. For K2, we extend the complex K1 by adding
one more vertex, called the apex, and connecting it with every vertex of the wheel via an
edge (see Figure 1b). We call these edges apex edges. We sort the edges of K2 in the
following order: apex edges, center fan edges, initial spoke edge, tire edges, inner spoke edges,
outer fan edges, and final spoke edge. The triangles remain in the same order as in K1.

The two major differences to the situation of K1 are: the tire edges are now positive
edges, so the compression will not remove these entries anymore. Moreover, shifting the
outer fan edges later in the filtration creates a block of n edges between the inner spoke
edges and the final spoke edge. The filtration boundary matrix therefore looks as depicted in
Figure 3, where the just mentioned block is given between the two horizontal lines.

Reduction complexity of K2. We see now that twist and swap reduction only cause one
column addition for every column on the right because the entries in the newly inserted block
prevent the algorithm from doing further reductions. Importantly, each column operation
only causes a constant number of bitflips, so that the complexity is linear in the end. Again,
it can easily be argued that the reduction of the edges for the twist and swap algorithm
requires only linear time.

For the retrospective reduction, the addition of the first column to the second half causes
a “sparsification”, as in the previous example. However, in this case, this sparsification
actually turns the first column into a column with n nonzero entries because it collects all
indices of tire edges while iterating through the staircase. Since we then add this column
n times (once to every column on the right) and each addition causes n bitflips, we get
quadratic complexity.

Reduction complexity of K3. For K3, we build up a filtration boundary matrix as
depicted in Figure 4. For reference, we call the horizontal blocks in figure block 1 to block 5,
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apex edges, ...
inner spoke edges

outer fan
edges

final spoke

wheel triangles fan triangles

0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0
0 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 1 1 1 1


Figure 3 Matrix for K2 (with n = 4)

starting from the bottom.
The twist algorithm applied to this boundary matrix reduces the fifth column by adding

all columns on the left to it. This results in a fill-in of row indices in block 4, and the pivot
being the unique row index of block 2. Since all columns on the right have the same pivot,
the reduced fifth column with n entries is added to every column to the right, resulting in
quadratic complexity.

In the swap reduction, the fifth column is reduced in the same way. However, when added
to the first column to the right, a swap happens so that in the reduction of the subsequent
columns, the sixth column is used. We can observe by the block structure in block 3 that all
further columns are reduced after one column addition. Also, column six has only 3 nonzero
entries, so the total complexity is linear.

Existence of simplicial complex K3. To realize the depicted matrix as the boundary
matrix of a simplicial complex, we again construct an open wheel. We attach one triangle to
the final spoke edge, joining it with a new vertex (represented by the middle column of the
matrix). Then, on the edge of that triangle not incident to the wheel center, we attach a fan
of n triangles. It is easily possible to sort the edges of this complex in a way that we get the
depicted block structure.

block 5

block 4

block 3

block 2

block 1



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

...
...

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 1 1 1 1
0 0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0


Figure 4 Matrix for K3 (with n = 4)

Reduction complexity of K4. For K4, we build a boundary matrix as in Figure 5. For
general n, the matrix has n columns on the left (group A), n columns on the right (group
C), and exactly 3 columns in the middle (group B).

For the twist reduction, the 2-nd column in group B gets reduced with one column
addition, resulting in a column with 4 nonzero entries. The 3-rd column in group B then
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has the same pivot as the just-reduced column in the middle, and the reduction of the 3-rd
column requires the addition of all columns in group A. Still, this process only requires a
linear amount of bitflips. All columns in group C get added from the 2-nd column in group
B, and because of their entries in the 3-rd row block, the reduction stops after one addition.
In total, the twist reduction needs only linear time.

In the swap reduction, the difference is that at the beginning of the reduction of the
3-rd column in group B, a swap happens (as the 3rd column has only 3 nonzero entries, the
2-nd column has 4 entries). That means that the 3-rd column in the middle gets added to
all columns in group C. Consequently, for the reduction of every column on the right, the
reduction adds all the groups on the left to it, resulting in a quadratic number of column
additions.

Existence of simplicial complex K4. The construction of a complex K4 that realizes
this boundary matrix can be done as follows: Similarly to K3, we start with an open wheel,
attach one new triangle (that is the 3-rd column in group B), and put a fan of n triangles at
its outer edge (these are the columns forming group C). To one of these triangles (that is,
the 1-st column in group B) we attach another triangle (the 2-nd column in group B). The
edge that is shared among the last described triangles is the last row in the matrix. The
edges can easily be sorted to yield the matrix of Figure 5.

group A group B group C

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

...
...

...
...

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 1 1 1 1
0 0 0 0 1 1 0 0 0 0 0


Figure 5 Matrix for K4 (with n = 4)

7 Conclusion and Discussion.

In this work, we analyzed how the sparsity of the reduced matrix correlates with the efficiency
of the reduction by comparing different algorithms that keep the matrix sparse(r). The
experiments show that there is no direct relation, as algorithms resulting in less sparse
matrices were faster than others that aggressively sparsify. Nevertheless, the idea of keeping
the matrix sparse has led us to novel reduction strategies that improve upon state-of-the-art
reductions. Hence, sparsity is an important factor in fast matrix reduction.

The retrospective algorithm often achieves comparable or even better performance than
the twist reduction without clearing columns. Specifically, it outperforms all other tested
methods for shuffled filtration. Up to our knowledge, this is the first time that a method
without clearing has been proven competitive in practice, which is remarkable as the clearing
is the standard optimization that consistently leads to improved performances. In our
experiments over a wide range of datasets, the retrospective method has regularly low fill-in
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compared to the other methods. We believe that the superior performance of the retrospective
method is rooted in its sparsity-preserving property.

As indicated in Section 6, there is no strategy that is strictly better than others, so the
best choice of reduction for a specific type of input has to be determined by comparison. We
have integrated our novel variants into the PHAT library to facilitate further comparisons.
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