
Primal-Dual Cops and Robber
Minh Tuan Ha !

Karlsruhe Institute of Technology, Germany

Paul Jungeblut !

Karlsruhe Institute of Technology, Germany

Torsten Ueckerdt !

Karlsruhe Institute of Technology, Germany

Paweł Żyliński !

University of Gdańsk, Poland

Abstract
Cops and Robber is a family of two-player games played on graphs in which one player controls
a number of cops and the other player controls a robber. In alternating turns, each player moves
(all) their figures. The cops try to capture the robber while the latter tries to flee indefinitely. In
this paper we consider a variant of the game played on a planar graph where the robber moves
between adjacent vertices while the cops move between adjacent faces. The cops capture the robber
if they occupy all his incident faces. We prove that a constant number of cops suffices to capture
the robber on any planar graph of maximum degree ∆ if and only if ∆ ≤ 4.
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1 Introduction

Cops and Robber is probably the most classical combinatorial pursuit-evasion game on graphs.
The robber models an intruder in a network that the cops try to capture. Two players play
with complete information on a fixed finite connected graph G = (V, E). The cop player
controls a set of k cops, each occupying a vertex of G (possibly several cops on the same
vertex), while the robber player controls a single robber that also occupies a vertex of G.
The players take alternating turns, where the cop player in her1 turn can decide for each cop
individually whether to stay at its position or move the cop along an edge of G to an adjacent
vertex. Similarly, the robber player on his turn can leave the robber at its position or move it
along an edge of G. The cop player starts by choosing starting positions for her k cops and
wins the game as soon as at least one cop occupies the same vertex as the robber, i.e., when
the robber is captured. The robber player, seeing the cops’ positions, chooses the starting
position for his robber and wins if he can avoid capture indefinitely. The least integer k for
which, assuming perfect play on either side, k cops can always capture the robber, is called
the cop number of G, usually denoted by c(G).

In this paper, we introduce Primal-Dual Cops and Robber, which is played on a plane
graph G, i.e., with a fixed plane embedding. Here, the cops occupy the faces of G and can
move between adjacent faces (i.e., along edges of the dual graph G∗), while the robber still
moves along edges between adjacent vertices of G. In this game, the robber is captured if
every face incident to his vertex is occupied by at least one cop. Analogously, we call the

1 We use female pronouns for the cop player and male pronouns for the robber player.
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4:2 Primal-Dual Cops and Robber

least integer k for which k cops can always capture the robber in the Primal-Dual Cops and
Robber game the primal-dual cop number of G and denote it by c∗(G).

An obvious lower bound for c∗(G) is the maximum number of faces incident to any vertex
in G: The robber can choose such a vertex as his start position and just stay there indefinitely
(note that there is no zugzwang, i.e., no obligation to move during one’s turn). In particular,
if G has maximum degree ∆(G) and there exists a vertex v with deg(v) = ∆(G), which is
not a cut-vertex, then c∗(G) ≥ ∆(G). E.g., c∗(K2,n) = ∆(K2,n) = n for any n ≥ 2.

Our contribution. We investigate whether the primal-dual cop number c∗(G) is bounded
in terms of ∆(G) for all plane graphs G. The answer is ‘Yes’ if ∆(G) ≤ 4 and ‘No’ otherwise.
In particular, our main result is the following theorem:

I Theorem 1. Each of the following holds:
1. For every plane graph G with ∆(G) = 3 we have c∗(G) ≤ 3 and this is tight.
2. For every plane graph G with ∆(G) = 4 we have c∗(G) ≤ 6 and this is tight.
3. For infinitely many n-vertex plane graphs G with ∆(G) = 5 we have c∗(G) = Ω

(√
log n

)
.

I Remark 2 (Connectedness). The classical cop number c(G) (and many of its countless
variants in the literature) are defined only for connected graphs G, as only the cops in the
same component can capture the robber. However, in the Primal-Dual Cops and Robber
game we do not require G to be connected, because the dual graph G∗ of a planar graph G

is always connected.

Related work. Let us just briefly mention that Cops and Robber was introduced by
Nowakowski and Winkler [15] and Quillot [17] for one cop and Aigner and Fromme [1] for
any number of cops. Since then numerous results and variants were presented, see e.g. [2, 3].
Perhaps most similar to our new variant are the recent surrounding variant of Burgess et
al. [5] with vertex-cops and the containment variant of Crytser et al. [7, 16] with edge-cops.
In these variants the robber is captured if every adjacent vertex, respectively every incident
edge, is occupied by a cop. The smallest number of cops that always suffices for any planar
graph G is three in the classical variant [1], seven in the surrounding variant [4], 7∆(G) in
the containment variant [7] and three when both, cops and robber, move on edges [8]. The
surrounding variants with vertex- and edge-cops are not restricted to planar graphs and their
respective cop numbers are always within a factor of ∆(G) of each other, but they can be
arbitrarily far apart from the classical cop number [14]. Finally, a wider perspective locates
our problem as a variant of the precinct version of the Cops and Robber game, where each
cop’s movements are restricted to an assigned “beat” or subgraph, see [6, 9, 11] for more
details.

2 Plane graphs with ∆ = 3

We start with an observation that simplifies the proofs of Statements 1 and 2 in Theorem 1.

I Observation 3. Let the robber be on a vertex u with a neighbor v of degree one. Then
the robber is never required to move to v to evade the cops.

Clearly, this is true because the set of faces required to capture the robber at v is a subset
of the faces required to capture him at u. Further, his only possible moves at v are either
staying there or moving back to u. As there is no zugzwang, he could just stay at u all along.
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Figure 1 Labeling of the angles for a robber move from u to v (and possibly further to w).

Proof of Statement 1 in Theorem 1. Keeping in mind the lower bound of c∗(G) ≥ ∆(G)
for biconnected graphs, all we need is to provide a winning strategy for three cops, say c1, c2, c3,
in a plane graph G with ∆(G) ≤ 3. Each cop is assigned a target face, initially the (up to)
three faces incident to the robber. The goal of each cop ci is to reach her target face fi,
thereby capturing the robber when all three cops arrived at their target faces. If the robber
moves, each cop updates her target face. Our strategy guarantees that the total distance of
all three cops to their target faces decreases over time, so it reaches zero after finitely many
turns.

Without loss of generality assume that G is a plane graph such that it contains only degree-
3 vertices and degree-1 vertices (which can always be achieved by adding leaves to vertices
not yet having the correct degree). First, the cops choose arbitrary faces to start on. Then
the robber chooses his start vertex u, which we assume to be of degree three by Observation 3
(it is trivial to capture him if all vertices are of degree one). Let ∠u

1 ,∠u
2 ,∠u

3 be the three
angles incident to vertex u and denote the face of G containing an angle ∠ ∈ {∠u

1 ,∠u
2 ,∠u

3}
by f(∠). Now, for each cop ci, i = 1, 2, 3, we initially set fi = f(∠u

i ).
Clearly, in every game the robber has to move at some point to avoid being captured.

Assume now that the robber moves from vertex u to vertex v (both of degree three by
Observation 3). Without loss of generality assume that the angles around u and v are labeled
as depicted in Figure 1, with fi = f(∠u

i ) being the current target face of cop ci, i = 1, 2, 3.
Assume first that c3 (or symmetrically c2) has not reached her target face yet. In this case

we assign the new target faces f1 = f(∠v
1), f2 = f(∠v

2) and f3 = f(∠v
3). Note that for i = 1, 2,

faces f(∠u
i ) and f(∠v

i ) are adjacent, and so cop ci can keep the distance to her target face
unchanged (or even decrease it) during her next turn. Next, observe that f(∠u

3 ) = f(∠v
3),

and so cop c3 can decrease her distance by one during her next turn. Thus, after the relevant
moves, the total distance of the three cops to their target faces decreases by at least one.

Assume now that c2 and c3 have already reached their target faces (but c1 has not, as
the game would be over otherwise). If setting f1 = f(∠v

1) and f2 = f(∠v
2) while keeping

f3 = f(∠u
3 ) = f(∠v

3) and then making the relevant moves toward target faces decreases the
total distance of the three cops, we proceed with these assignments/moves. Otherwise, if the
above setting is not satisfactory, we move c1 one step towards her target face f1 = f(∠u

1 )
and c2, c3 both to f(∠v

2). Now, its the robber’s turn again. If he does not move, we assign
target faces fi = f(∠v

i ), i = 1, 2, 3, and the total distance decreases after the cops’ next turn.
If he moves back to u, we assign target faces fi = f(∠u

i ), i = 1, 2, 3, and the total distance
also decreases after the cops’ next turn. The last possibility for the robber is to move towards
another neighbor w of v, see Figure 1. Then, we assign f1 = f(∠v

1) and f2, f3 to be the faces
containing the other two angles at w. In their next turn, c2 and c3 can again reach their
target faces, while c1 decreases the distance to her target face f(∠v

1) by one compared to the
initial situation with the robber at vertex u. Again, the total distance is decreased, which
concludes the proof. J

CGT
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Figure 2 A vertex-cop and its four accompanying face-cops moving from u to v.

3 Plane graphs with ∆ = 4

To prove the upper bound in Statement 2 in Theorem 1, we reduce our Primal-Dual Cops
and Robber to the classical Cops and Robber with cops on vertices of the dual graph G∗ of
G = (V, E) and then use a result from the literature.

Upper bound
We claim that for every plane graph G of maximum degree 4, we have c∗(G) ≤ 6, i.e., that
six face-cops can always catch the robber. As a warming up, we first discuss a simple strategy
that shows c∗(G) ≤ 12 for any plane graph G with ∆(G) = 4 and also gives rise to a better
strategy. Without loss of generality assume that G is a plane graph such that it contains
only degree-4 vertices and degree-1 vertices (which again can be achieved by adding leaves to
vertices not yet having the required degree). Following the notation in the proof of Theorem 1
(Statement 1), consider a vertex-cop c located at a degree-4 vertex u ∈ V with four incident
angles ∠u

i , i ∈ {1, 2, 3, 4}, and place four face-cops on the relevant four faces f(∠u
i ).

I Remark 4. If the vertex-cop c moves to an adjacent vertex v, the four face-cops around
her can in one step also move to faces containing the angles incident to v (see Figure 2 for
an illustration).

Consequently, in any plane graph G with ∆(G) = 4, four face-cops can simulate a
vertex-cop. Aigner and Fromme prove that c(G) ≤ 3 for all plane G [1], which immediately
results in c∗(G) ≤ 4 · c(G) = 12 in that class of graphs.

But how about exploiting the fact that the dual graph G∗ of G is planar? Assume that
the robber, initially located at vertex u, with the relevant incident faces f(∠u

i ), i ∈ {1, 2, 3, 4},
is trying to avoid some six cops, say c1, . . . , c6. Let U = 〈u0 = u, u1, u2, . . .〉 be the sequence
of vertices in G visited by the robber. Then, taking into account Remark 4, the sequence U

defines the four sequences

F ∗i =
〈
f∗(∠u0

i ), f∗(∠u1
i ), f∗(∠u2

i ), . . .
〉
, i ∈ {1, 2, 3, 4}

of vertices in the dual graph G∗ of G, corresponding to the four sequences

Fi =
〈
f(∠u0

i ), f(∠u1
i ), f(∠u2

i ), . . .
〉
, i ∈ {1, 2, 3, 4}

of faces incident to vertices uj ∈ U . Assume now that the cops’ strategy is as follows: First,
cops c1, c2 and c3, by playing together the Cops and Robber game in the dual graph G∗ –
which is possible by Remark 4 – are trying to catch the imaginary robber r1 moving in G∗

with respect to the sequence F ∗1 (so cops c4, c5 and c6 pause during this phase).
Clearly, by applying the strategy in [1] for planar graphs, they will succeed in a finite

number of steps. Assume that the cop c1 is the one that catches the imaginary robber at
vertex f∗1 (∠ut1

1 ) at time moment t1. Then, again taking into account Remark 4, the cop c1
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can escort (by being located at the same vertex in G∗) the imaginary robber r1 forever.
What do the remaining cops do next? Cop c4 becomes activated and then cops c2, c3 and c4,
by applying the same strategy, catch the imaginary robber r2 in G∗ which is (and has been)
moving with respect to the sequence F ∗2 . Again, after a finite number of steps, say at time
moment t2, the face f(∠ut2

2 ) becomes occupied by one of these cops, say c2. Consequently,
at time moment t2, while the (real) robber is located at vertex ut2 , the face(s) f(∠ut2

1 )
and f(∠ut2

2 ) are occupied by cops c1 and c2, respectively, which then can escort the imaginary
robbers r1 and r2 forever (by Remark 4).

Observe now that, by activating cop c5 and eventually cop c6, again by applying the
same strategy, all faces fi(∠

ut4
1 ), i ∈ {1, 2, 3, 4}, incident to the (real) robber will become

occupied by four cops at some time moment t4, thus ending the game, which immediately
results in c∗(G) ≤ 6 as required.

Lower bound
Consider a more restrictive variant of the classical Cops and Robber game in which both,
cops and robber, play again on vertices and move along edges, and the robber is caught
on a vertex v if and only if there is (at least) one cop on (at least) one neighbor u of v. So,
while in the classical Cops and Robber game the robber must (in order to win) maintain
distance at least 1 to all cops at all times, in the new variant we consider now, the robber
must (in order to win) maintain distance at least 2 to all cops at all times.

It turns out, that in this variant played on a planar graph, also three cops are sometimes
needed2. As in the classical game, a lower bound example can be derived from the dodecahe-
dron graph D. In preparation for later arguments, let us prove this in the following stricter
and, unfortunately, quite technical, form.

I Lemma 5. Let D5 = (V, E) be the dodecahedron graph D with each edge subdivided by five
degree-2 vertices, as depicted in Figure 3 with its unique plane embedding. Let two cops and
one robber be playing on the vertices of D5 and moving along edges of D5.

Then there is a strategy for the robber to maintain at all times distance at least 2 to both
cops on D5. This still holds under the additional restriction that each time the robber moves
onto a degree-3 vertex v, he must announce (before seeing the cops’ next move) to which
neighbor of v he moves in his next turn.

Proof. Let V3 = {v ∈ V | deg(v) = 3} be the set of the twenty degree-3 vertices in D5.
Consider now a vertex v ∈ V3. We say that a situation is safe around v if:

the robber has distance exactly 1 to v (i.e., occupies a neighbor of v) and
both cops have distance at least 4 to v.

Our strategy for the robber goes as follows. After the initial placement of the two cops,
the robber chooses his starting vertex to be a neighbor, say sv, of some v ∈ V3 to which
both cops have distance at least 4, which makes him safe around v3. Then, the robber stays
motionless at the vertex sv as long as the situation is safe around v. Otherwise, if at least one
of the cops, say c1, enters a vertex at distance exactly 3 to v, then the robber must react. He
considers the three vertices w1, w2, w3 ∈ V3 at distance 6 to v. Note that c1 has distance 9
to two of these, say w1 and w2. See the right of Figure 3 for an illustration. Moreover, as

2 Three cops are also sufficient, but we do not need this here.
3 This can be done since each cop can have distance at most 4 to at most two vertices in V3.

CGT



4:6 Primal-Dual Cops and Robber

w1

v

w2

w3

r

c1
c2

c2

Figure 3 The 5-times subdivided dodecahedron graph D5 (left) and an illustration of the strategy
in Lemma 5 (right) with two exemplary positions for the cop c2 at distance 9 to w1.

each cycle in D5 is of the length at least 30, the other cop c2 has distance at least 9 to at
least one of w1, w2, say to w1.

Now, the robber moves from his current position at sv to the closest vertex, say sw1 , in
the neighborhood of w1. Clearly, going from sv to sw1 takes either four or six turns. In case
the first step brings him to v, the robber also announces his follow-up move, as required in
the statement of the lemma. It follows from the choice of w1 that on the robber’s way to sw1 ,
both cops have distance at least 4 to the robber. In addition, again by the choice of w1 and
the fact that the cops made at most five steps and its their turn now, the situation is safe
around w1 (for the robber at sw1), which immediately completes the proof. J

Based upon Lemma 5, our purpose is to construct now a plane graph G of maximum degree
∆(G) = 4 in which five face-cops are not enough to capture the robber, i.e., with c∗(G) ≥ 6.
Before we start, we need one definition. Let H = (V, E) be a plane graph and consider a vertex
v ∈ V . Further, let the neighbors of v be ordered with respect to the plane embedding of H, say
N(v) = (v1, . . . , vk), where k = degH(v). Then, the degree-based split of v in G is the graph
resulting from G by deleting v, together with its incident edges, and adding k new vertices
u1, . . . , uk, together with the edges {v1, u1}, {u1, v2}, {v2, u2}, {u2, v3}, . . . , {vk, uk}, {uk, v1}
forming a cycle of length 2k. See the top-right of Figure 4 for an illustration.

So let D be the dodecahedron graph and consider its plane subdivision D5 as in Lemma 5.
Note that D5 is bipartite with one bipartition class A consisting of the set V3 of all degree-3
vertices of D5 together with two subdivision vertices per edge of the dodecahedron, and the
other bipartition class B consisting of three subdivision vertices per edge of the dodecahedron,
including all neighbors of vertices in V3. Now, we construct our graph G from D5 as follows
(see Figure 4 for an illustration). We first apply the degree-based split operation to all
vertices v ∈ A. Notice that since D5 is bipartite (in particular, A is an independent set),
the resulting graph G0 is unique, that is, the order in which we apply the split operations
does not matter. We then embed G0 in the plane, “inheriting” the embedding of D5, again
see Figure 4 for an illustration (here and there, we omit a formal construction since its
description is tedious while we find it fairly enough illustrating it with a figure).

It follows from the construction that for each face f of D, the graph G0 contains a 30-
cycle Cf alternating between degree-2 vertices (corresponding to new vertices) and degree-4
vertices (corresponding to vertices in B). Now, for each such cycle Cf , the next step is to
connect (in a crossing-free way) its fifteen degree-2 vertices in order to create another 30-cycle,
first turning these into fifteen degree-4 vertices and connecting them consecutively by adding
new edges, and then subdividing each of these edges exactly once, thus creating fifteen new
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Figure 4 Left: A portion of the 4-regular planar graph G based on D5. For the sake of readability
only some 30-cycles are shown in the faces of D. The subgraph G0 is highlighted in thick. Top-right:
The degree-based split of v. Bottom-right: Adjoining a 30-cycle to a 30-cycle.

degree-2 vertices. See the bottom-right of Figure 4. Starting with the new 30-cycle, we repeat
this step many times for each face f of D5 – say 100 times, which is more than enough. In
the resulting graph G, there is exactly one facial 30-cycle for each face of D. We call these
twelve faces of G the holes. There are also twenty faces of length 6 in G; one for each vertex
of the dodecahedron D. All remaining faces in G have length 4, see again Figure 4 for an
illustration of the resulting graph G.

To argue that c∗(G) > 5, the robber pursues the following strategy against five face-cops.
He restricts himself to G0 only, focuses on just two of the cops c1 and c2, and ensures that
neither c1 nor c2 ever gets on a face of G incident to the robber’s current position. As each
vertex of G0 has four (pairwise distinct) incident faces, the three cops different from c1, c2
can never surround the robber and hence can be safely ignored.

In order to argue that the robber can maintain some distance to c1 and c2, we interpret
any state of the game on G as a game on D5 in which the robber and the two cops c1, c2
occupy vertices of D5.

To be more precise, the robber moves on vertices of G0, each of which either corresponds
directly to a vertex b ∈ B in D5 or to a vertex resulting from the degree-based split of some
vertex a ∈ A in D5. On the other hand, the cops move on faces of G:

The twenty 6-faces correspond directly to vertices of degree 3 in D5.
For each 4-face, there is a well-defined corresponding vertex in D5 – as indicated by the
colors in Figure 4– such that for every pair of adjacent 4- or 6-faces in G, the corresponding
vertices in D5 form an edge.
Only the holes have no corresponding vertex in D5.

CGT
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We now observe that a vertex of G0 is incident to a 4- or 6-face in G only if the
corresponding vertices in D5 have distance at most 1. Thus, the strategy in Lemma 5 for the
robber in D5 to maintain distance at least 2 to any two vertex-cops, provides a strategy for
the robber in G to maintain distance at least 2 to any two face-cops, provided the face-cops
do not enter any hole4. However, if some face-cop, say c1, enters the hole in some face f

of D5, it takes her at least 100 turns to reach again any face of G incident to a vertex in G0.
It is then easy for the robber to ignore c1 for 100 turns and to move, while maintaining
distance at least 2 to c2, to a part of G0 “far away from f”; for example to a part of G0
corresponding to a face of D5 that is non-adjacent to f .

This proves that c∗(G) > 5 and therefore the tightness of Statement 2 in Theorem 1.

4 Plane graphs with ∆ = 5

In this section we prove Statement 3 in Theorem 1, i.e., that c∗(G) = Ω
(√

log n
)
for infinitely

many n-vertex plane graphs G with ∆(G) = 5. We utilize a result of Fomin et al. [12] about
the cop number cp,q(G) for a different variant of Cops and Robber for any graph G and
positive integers p and q. Here (as in the classical variant) the cops and the robber are on
the vertices of G. However, in each turn the cops may traverse up to p edges of G, while the
robber may traverse up to q edges of G. We refer to p and q as the velocities of the cops and
the robber, respectively.

I Theorem 6 ([12]). Let Gn be the n× n grid graph, p be the velocity of the cops and q be
the velocity of the robber. If p < q, then cp,q(Gn) = Ω

(√
log n

)
.

The idea to prove Statement 3 in Theorem 1 is to construct a “grid-like” graph Gn,s,r

for positive integers n, s, r in which the robber in the primal-dual variant can move around
faster than the cops. Then he can simulate the evasion strategy of the robber in the variant
of Fomin et al. [12].

We refer to Figure 5 for an illustration of the upcoming construction. We start with
the n × n grid graph Gn, n ≥ 3, with a planar embedding such that the 4-faces are the
inner faces. The outer face of Gn has length 4(n− 1). We call the vertices of Gn the grid
vertices. First, each edge of Gn is subdivided by 2s new vertices, called subdivision vertices,
which results in the graph Gn,s. The inner faces of Gn,s have 4 · 2s subdivision vertices on
its boundary, while the outer face f0 has 4(n− 1) · 2s. Next, inside each face f in Gn,s with
x subdivision vertices, we add r nested cycles (also nesting the boundary cycle of f), called
rings, of length 3

2x each and call their vertices the ring vertices. Between any two consecutive
rings we add a planar matching of 3

2x edges. The closest ring of an inner face f of Gn,s

is the outermost ring in f ; for the outer face f0 it is the innermost ring in f0. At last, we
add edges in a crossing-free way between each subdivision vertex v and (in total three) ring
vertices on the closest ring in the two faces incident to v in Gn,s in such a way that:

each ring vertex on a closest ring has exactly one edge to a subdivision vertex,
each subdivision vertex has two edges to ring vertices in one incident face of Gn,s and
one edge to a ring vertex in the other incident face of Gn,s, whilst
the side with two edges to ring vertices always switches along each subdivision path.

In total, each subdivision vertex receives three edges, and each face of Gn,s with x subdivision
vertices receives 3

2x edges which are connected to the 3
2x vertices of the closest ring.

4 Note that it was crucial in Lemma 5 that the robber must announce his moves along a degree-3 vertex
in D5, because correspondingly in G0 he moves to one of two possible vertices of the 6-face.
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Figure 5 G4,2,2: A 4 × 4 grid with each edge subdivided four times and two rings. Faces are
colored according to their closest grid vertex. Deep and shallow faces are light and dark, respectively.

Call the resulting graph Gn,s,r and note that ∆(Gn,s,r) = 5. See again Figure 5 for an
illustrating example. We shall use a robber strategy in which he only focuses on grid vertices
of Gn,s,r and moves between these through the paths of subdivision vertices, i.e., only plays
on Gn,s. The purpose of the additional rings in Gn,s,r is to slow down the cops and force
them to stay close to grid and subdivision vertices, too, thereby simulating the game of
Fomin et al. [12] on Gn.

Formally, we call a face of Gn,s,r shallow if it is incident to some subdivision vertex, and
deep otherwise. Lemma 7 below implies that, due to the number of rings, cops should not
use deep faces.

I Lemma 7. Let a1, a2 be two shallow faces of Gn,s,r inside the same face f of Gn,s.
If r > 3s(n− 1) then any cop moving from a1 to a2 along a shortest path without leaving f

uses only shallow faces.

Proof. Let x be the number of subdivision vertices on the boundary of f . In particular, x ≤
4(n− 1) · 2s. There are exactly 3

2x shallow faces inside f ; one for each edge of the closest ring
in f . Hence, the cop may move from a1 to a2 using only shallow faces in no more than 3

4x

steps. On the other hand, the deep face b of length 3
2x is at distance r > 3s(n − 1) ≥ 3

8x

from each of a1, a2 and hence no shortest path between a1 and a2 uses b.
Let H be the subgraph of the plane dual of Gn,s,r induced by all inner faces inside f ,

except b. Then H ∼= Pr � C 3
2 x is a square grid on a cylinder of height r and circumference 3

2x,
with the shallow faces forming a boundary cycle C. Since a1, a2 are on C and each shortest
path lies inside H, such path is contained in C, i.e., uses only shallow faces. J

Let F be the set of all faces of Gn,s,r. For a face f ∈ F , we denote by vf the grid vertex
closest to f , breaking ties arbitrarily.

I Lemma 8. Let a, b be two shallow faces whose closest grid vertices va, vb have distance d

in Gn. If r > 3s(n−1), then in Gn,s,r the robber moving from va to vb needs at most (2s+1)d
steps, while any cop moving from a to b needs at least 3s(d− 2) steps.

Proof. For the first part it is enough to observe that the robber may go along subdivision
vertices, taking him exactly 2s + 1 steps for every corresponding edge in Gn.

CGT
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For the second part, i.e., the lower bound on the number of moves for a cop, let A

and B be the inner faces of Gn containing the inner faces a and b of Gn,s,r, respectively.
We assume that d ≥ 3, as otherwise 3s(d− 2) ≤ 0 and there is nothing to show, and hence
we have va 6= vb. More precisely, traveling from a to b, the cop must traverse inner faces
of Gn,s,r with at least d + 1 pairwise different closest grid vertices of Gn. Cutting off the
initial part with closest grid vertex va and final part with closest grid vertex vb, Lemma 7
implies that the remaining shortest path for the cop uses only shallow faces. Thus, on her
way, the cop visits shallow faces incident to at least d− 1 distinct grid vertices, i.e., d− 2
transitions from a shallow face at a grid vertex to a shallow face at a neighboring (in Gn)
grid vertex. As each such transition requires 3s moves, the claim follows. J

Proof of Statement 3 in Theorem 1. Fomin et al. [12] describe an evasion strategy for
a robber with velocity q that requires Ω

(√
log n

)
vertex-cops with velocity p to capture him

in Gn, provided q > p; see Theorem 6. In the following, we describe how a robber with
velocity 1 in Gn,s,r (for sufficiently large n, s, r) can simulate this strategy against face-cops
with velocity 1.

We choose p = 7, q = 8 and consider the game of Fomin et al. for these velocities. For
their graph Gn in which the robber can win against k = Ω

(√
log n

)
vertex-cops, we then

consider Gn,s,r with s = 8 and r = 3s(n − 1) + 1. Now we copy the evasion strategy S
for the robber as follows: Whenever it is the robber’s turn and the face-cops occupy faces
f1, f2, . . . , fk in Gn,s,r, consider the corresponding situation in Gn where the vertex-cops
occupy vertices vf1 , vf2 , . . . , vfk

, respectively. Based on these positions, S tells the robber to
go to a vertex v at distance d ≤ q = 8 from the current position of the robber in Gn. By
Lemma 8, the robber in Gn,r,s can go to v in at most (2s + 1)d ≤ (2 · 8 + 1) · 8 = 136 turns.

In the meantime, each face-cop also makes up to 136 moves in Gn,r,s, traveling from some
face a to some face b, which is interpreted in Gn as the corresponding vertex-cop traveling
from va to vb. For va and vb to be at distance d′ ≥ 8 in Gn, the face-cop needs at least
3s(d′−2) ≥ 3 ·8 ·6 = 144 turns, by Lemma 7, which is strictly more than 136. Thus, after 136
turns, each vertex-cop made at most p = 7 steps in Gn, as required for strategy S.

Hence, the robber can evade k face-cops in Gn,s,r, proving c∗(Gn,s,r) > k. Since Gn,s,r

for s ∈ O(1) and r ∈ O(n) has O(n2) vertices, this completes the proof. J

5 Conclusion and discussion

Let c∗∆ denote the largest primal-dual cop number among all plane graphs with maximum
degree ∆. We have shown that c∗3 = 3, c∗4 = 6 (both bounds are tight), and sup(c∗5) = ∞,
while it is easy to see that c∗1 = 1, c∗2 = 2, and sup(c∗∆) =∞ for all ∆ > 5. Let us remark
that our proof for ∆ = 5 also holds for a variant of the game where the robber is already
captured when a single cop reaches an incident face. On the other hand, all our results
for ∆ ≤ 4 can be also carried over to more restrictive variants in which the robber may not
traverse an edge if one (or both) incident face(s) is/are occupied by a cop.

An interesting direction for future research would be to identify classes of plane graphs with
unbounded maximum degree for which c∗(G) ≤ f(∆(G)) for some function f . For example,
what about plane Halin graphs or plane 3-trees, also known as stacked triangulations?

Lastly, there are (at least) two possibilities to generalize Primal-Dual Cops and Robber
to classes of potentially non-planar graphs.

Let G be a graph with a crossing-free embedding on any (orientable or non-orientable)
surface Σ. Our proof for the upper bound in the case ∆(G) ≤ 3 still works. In particular,
in that case, the primal-dual cop number is independent of the (non-orientable) genus
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of Σ. Similarly, our result still holds for ∆(G) ≥ 5 as the graph Gn,s,r constructed in the
proof of Theorem 1 (Statement 3) can be embedded on Σ. Finally, turning our heads
to ∆(G) ≤ 4, the same strategy as that proposed in the proof of Theorem 1 (Statement 2)
can be used to give an upper bound of c(G∗) + ∆(G)− 1 on the primal-dual cop number
in this case (where G∗ is the dual graph corresponding to the given embedding on Σ).
In particular, when Σ is orientable with genus g, it is known that c(G∗) ≤ 1.268g [10]
(using the fact that G∗ also has a crossing-free embedding on Σ).
A cycle double cover of a graph G is a collection of cycles C such that each edge of G is
contained in exactly two cycles. For example, the set of a facial cycles of a biconnected
plane graph forms a cycle double cover. It is famously conjectured that every biconnected
graph has a cycle double cover. Given G and C, one can consider a variant of Cops and
Robber with cycle-cops, i.e., a cop always occupies a cycle of C and can move in one
turn from her current cycle C ∈ C to another cycle in C that shares an edge with C.
The robber behaves as in the original game and is captured if all cycles incident to his
vertex are occupied by cycle-cops. Our lower bound on the primal-dual cop number for
graphs with ∆ ≥ 5 is still valid in this variant: the constructed graph Gn,r,s is planar
and biconnected, and so its faces in the described planar embedding yield a cycle double
cover. It is an interesting open question to consider the case ∆ ≤ 4 here.
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