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Abstract
We consider the (1 + ε)-Approximate Nearest Neighbour (ANN) Problem for polygonal curves in
d-dimensional space consisting of at most k vertices under the Fréchet distance and ask to what
extent known data structures for doubling spaces can be applied to this problem. Initially, this
approach does not seem viable, since the doubling dimension of the target space is known to be
unbounded — even for well-behaved polygonal curves of constant complexity in one dimension. In
order to overcome this, we identify a subspace of curves which has bounded doubling dimension and
small Gromov-Hausdorff distance to the target space. We then apply state-of-the-art techniques
for doubling spaces and show how to obtain a data structure for the (1 + ε)-ANN problem for
any set of parametrized polygonal curves. The expected preprocessing time needed to construct
the data-structure is F (d, k, S, ε)n logn and the space used is F (d, k, S, ε)n, with a query time of
F (d, k, S, ε) logn+ F (d, k, S, ε)− log(ε), where F (d, k, S, ε) = O

(
2O(d)kΦ(S)ε−1)k and Φ(S) denotes

the spread of the set of vertices and edges of the curves in S. We extend these results to the realistic
class of c-packed curves and show improved bounds for small values of c.
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1 Introduction

Given a set S of n points, the Nearest Neighbour Problem is the problem of finding the point
in S that minimizes the distance to a given query point q. The Nearest Neighbour Problem
is a fundamental problem whose variants have long been studied and applied in different
areas, such as RNA sequencing [8], disease diagnosing [35], motion pattern detection [18],
shape indexing [7] or handwritten digit recognition [27]. The problem has been studied as
early as the 1960s [28], and classical results such as the one by Shamos via point location in
a Voronoi diagram achieve a query time of O(logn) while using O(n logn) space in R2 [33],
which was later improved upon by Kirkpatrick to only require linear space and preprocessing
time with the logarithmic query time [25].

Various methods have been employed to design data structures for approximate solutions
to the Nearest Neighbour Problem [6, 21, 26]. One complexity measure often used to
generalize approaches for Euclidean spaces to more complicated metric spaces is the notion
of doubling dimension [20, 24, 36]. The doubling dimension is the smallest number d such
that any metric ball inside the metric space can be covered by 2d many balls of half the
radius. It is a well known fact that in Euclidean space the doubling dimension roughly
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corresponds to the dimension, that is, the doubling dimension of Rd is Θ(d). The Approximate
Nearest Neighbour (ANN) Problem in spaces with low doubling dimension has been studied
extensively [24] and results are known that roughly match the bounds known for Rd [22].

The metric space we are interested in is the space of polygonal curves in Rd under the
Fréchet distance. Polygonal curves naturally arise from any sort of motion tracking, such
as GPS data or motion capture data, and are therefore of much interest. The Fréchet
distance is a natural distance measure on parametrized curves [4] that — unlike the Hausdorff
distance — takes into account the parametrization of the curves and has received considerable
attention [2, 5, 11, 12, 13, 14]. The metric space of curves under the Fréchet distance has
been shown to have unbounded doubling dimension [15], which suggests that data structures
designed for doubling spaces would perform poorly. Our primary motivation in this paper is
to find a workaround to this problem, and to leverage the rich background of ANN results
for doubling spaces to the Fréchet distance after all. We observe that the family showing
unbounded doubling dimension has either arbitrarily long edges or arbitrarily short edges.
Our approach circumvents these two scenarios and gives a small doubling dimension for all
other cases by choosing an appropriate subspace.

1.1 Basic definitions
The metric space we study in this paper is the set of all polygonal curves with the Fréchet
distance as its metric.

I Definition 1 (polygonal curve). An edge in Rd is the continuous map obtained from the
linear interpolation of two points a and b in Rd. We may write a b to denote this unique edge.
A polygonal curve T : [0, 1]→ Rd of complexity n is defined by an ordered set of n points
in Rd and is the result of (n− 2) concatenations of the (n− 1) edges in Rd defined by any
two consecutive points. We call the underlying points of a polygonal curve of complexity n its
vertices. For 0 ≤ s ≤ t ≤ 1 we denote the subcurve of T from T (s) to T (t) by T [s, t].

I Definition 2 (Fréchet distance). Given two curves X and Y in Rd, their Fréchet distance
is defined as

dF (X,Y ) = inf
f,g:[0,1]→[0,1]

max
t∈[0,1]

‖X(f(t))− Y (g(t))‖

where f and g are non-decreasing and surjective.

In our definition of the Fréchet distance given above, we follow Alt and Godau [3]. The
Fréchet distance is generally not a metric, but rather a pseudo-metric, as there are curves
X 6= Y , such that dF (X,Y ) = 0. However, this is easily remedied by considering the quotient
space induced by the equivalence relation X ∼ Y ⇐⇒ dF (X,Y ) = 0. If we assume that
no vertex of an input curve lies inside the convex hull of its two neighbors along the curve,
then the ordered sequence of vertices of two equivalent curves is the same. Therefore, we can
eliminate all duplicates in near-linear time using lexicographical sorting. This results in a
set of curves with pairwise non-zero distance. In the following, we simply assume that the
Fréchet distance between any two curves in the input is non-zero.

I Definition 3. Denote by (Xd,k,dF ) the metric space of polygonal curves in Rd with
complexity k under the continuous Fréchet distance. We further write (Xd,kΛ ,dF ) for the
subspace of polygonal curves in (Xd,k,dF ) where the length of each edge is bounded by Λ.

A well-studied variant of the continuous Fréchet distance is the discrete Fréchet distance
where only the vertices—and not their connecting edges—are considered in the computation.
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Similar to the continuous Fréchet distance, the discrete Fréchet distance is a pseudo-metric
and can be regarded as a metric in a corresponding quotient space.

I Definition 4 (discrete Fréchet distance). Given two polygonal curves X and Y in Rd defined
by vertices x1, . . . , xn and y1, . . . , ym, their discrete Fréchet distance is defined as

ddF (X,Y ) = inf
f,g

max
t∈[0,1]

‖xf(t) − yg(t)‖,

where f : [0, 1] → {1, . . . , n} and g : [0, 1] → {1, . . . ,m} are non-decreasing and surjective
functions.

The following well-known fact relates the discrete Fréchet distance to the continuous
Fréchet distance.

I Observation 5. Let P,Q be polygonal curves in Rd. Then dF (P,Q) ≤ ddF (P,Q).

Problem definition ((1 + ε)-ANN) Let (M,dM) be a metric space. Let P ⊂M be a set
of points in M and a parameter ε > 0 be given. For a given point q ∈ M, the (1 + ε)-
Approximate Nearest Neighbour Problem ((1 + ε)-ANN) is to find a point x̂ ∈ P whose
distance to q approximates the distance to the nearest neighbour in P . Specifically, x̂ ∈ P is
a valid solution iff for all x ∈ P it holds that

dM(q, x̂) ≤ (1 + ε) dM(q, x)

1.2 State of the art
Most of the work on nearest-neighbour data structures for curves has focused on the discrete
Fréchet distance. One such recent result is due to Filtser, Filtser and Katz [17] who presented
a data structure for the (1 + ε, r)-Approximate Near Neighbour Problem of size n ·O(1/ε)md,
with a query time of O(md), where n is the number of input curves, and m is the complexity
of the input-curves. When the complexity k of the query curve is small compared to the
complexity m of the input curves, the space can be improved to n · O(1/ε)kd with query
time O(kd log(nkd/ε)). In the (1 + ε, r)-Approximate Near Neighbour Problem the goal is
to construct a data structure on a set of input-curves which for a given query-curve outputs
any of the input-curves that is at distance at most (1 + ε)r to the query curve, if there is an
input-curve with distance at most r to the query-curve.

Results for the (1+ε, r)-Approximate Near Neighbour problem readily extend to the (1+ε)-
Approximate Nearest Neighbour Problem by a result of Har-Peled, Indyk and Motwani [21].
This reduction incurs merely an additional logarithmic factor O(log2(n)) in the size, and
O(logn) in the query time.

In contrast to the multitude of approaches to the discrete Fréchet distance for arbitrary
dimension, results concerning the continuous Fréchet distance appear harder to come by.
Consider the naive approach of approximating the continuous Fréchet distance via the discrete
Fréchet distance. For this, let a set of n curves in Xd,kΛ as well as the approximation parameter
ε be given. For the discrete Fréchet distance to approximate the continuous Fréchet distance
up to an additive term of rε for some r > 0, we require successive vertices to lie at most
Θ(rε) far apart. Thus we subdivide every edge into edges of length at most rε, resulting in a
set of n curves each of complexity O(kΛ/(rε)). Building the (1 + ε, r)-ANN data structure
from [17] results in a space requirement of n · O(1/ε)O(dkΛ/(rε)). As the radii used in the
reduction can be as small as r∗/n, where r∗ is roughly the distance of some two input curves,

CGT



6:4 (1+ε)-ANN Data Structure for Curves via Subspaces of Bounded Doubling Dimension

this extends to a data structure of size O(n log2(n)) ·O(1/ε)O(ndkΛ/(r∗ε)) for the (1 + ε)-ANN
problem.

Bringmann et al. [10] showed that there is a (1 + ε, r)-Approximate Near Neighbour data
structure for the continuous Fréchet distance in one dimension, which uses n ·O(mkε )k space,
needs O(nm) ·O(mkε )k expected preprocessing time and achieves a query time of O(k · 2k).
They also show tightness of their data structure bounds in several scenarios. More precisely,
they show conditional lower bounds based on the Orthogonal Vectors Hypothesis that give
reason to believe that one cannot achieve preprocessing time poly(n) and query time O(n1−ε′)
at the same time, when k is 1� k � logn and m > k · nc/k, even if d = 1. Their arguments
also apply to the c-ANN problem under the continuous Fréchet distance for any c ∈ [1, 2).

In two dimensions, Afshani and Driemel presented a data structure based on semi-algebraic
range searching that solves the (exact) Near Neighbour Problem under the Fréchet distance [1].
The data structure needs O(n(log logn)O(m2)) space and has query time O(

√
n logO(m2) n).

In higher dimensions, Mirzanezhad recently presented a data structure result for the
(1 + ε, r)-Approximate Near Neighbour Problem under the continuous Fréchet distance,
using space in n · O((max(1, D)

√
d/ε2)kd) and query time in O(kd), where D denotes the

diameter of the underlying vertex set of the input curves [30]. However, as presented this
data structure works only if ε < r (refer to Theorem 8 in the arXiv version [29]). The data
structure covers the entirety of the input-curves with a grid of edge-length roughly εr, to
precompute an answer for every sequence of k gridpoints. A query-curve is then snapped to
the closest grid points and the precomputed answer is given as the output. For smaller values
of r one would have to scale the input, increasing D accordingly. As a result, combining this
data structure with the standard reduction by Har-Peled, Indyk and Motwani [21] does not
lead to an efficient data structure for the ANN-problem.

Independent to our work, Cheng and Huang very recently presented a (1 + ε)-ANN
data structure for polygonal curves in arbitrary dimension under the continuous Fréchet
distance. The data structure uses space in Õ

(
k(mndd/εd)O(k+1/ε2)

)
and achieves query

time in Õ
(
k(mn)0.5+ε/εd + k(d/ε)O(dk)). Here, Õ(·) hides polylogarithmic factors with

exponents in O(d).

1.3 Our contribution

In this paper, we provide a (1 + ε)-ANN data structure for a set of curves in arbitrary
dimensions under the continuous Fréchet distance. One of the main ingredients is the
construction of a suitable subspace of the space of all polygonal curves. This subspace has
small distance to the original space as metric spaces and additionally, unlike the space of
all polygonal curves, bounded doubling dimension. Our approach can thus be seen as a
particular instance of the more general idea of using results on the ANN problem for spaces
of bounded doubling dimension in the context of spaces that are close to a space of bounded
doubling dimension, even if they do not themselves have this property. This approach
was inspired by the work of Sheehy and Sheth on the bottleneck distance for persistence
diagrams [34].

Throughout this paper, for simplicity of the exposition, we will not distinguish between
small or large k, that is, we assume k = m. A key result is the following (Section 5).

I Theorem 6. Given a set S of n polygonal curves in Xd,kΛ and parameters 0 < ε < 1 and
ε′ > 0, one can construct a data structure that for given q ∈ Xd,k outputs an element s∗ ∈ S
such that for all s ∈ S it holds that dF (s∗, q) ≤ (1 + ε)dF (s, q) + ε′. The query time is
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O
(
2O(d)k(1 + Λ/ε′)

)k logn+O
(
2O(d)k(1 + Λ/ε′)

)−k log(ε), the expected preprocessing time
is O

(
2O(d)k(1 + Λ/ε′)

)k
n logn and the space used is O

(
2O(d)k(1 + Λ/ε)

)k
n.

To turn this into a data structure with a purely multiplicative error we choose ε′ as the
smallest Fréchet distance of any two distinct input curves over ε. Thus, the running time and
space complexity of our data structure polynomially depends on a numerical value, which we
call the bundledness of the set of input curves.

I Definition 7 (bundledness). Given a set of curves S ∈ Xd,k, the bundledness G(S) of S is
defined as

G(S) = mins6=s′∈S dF (s, s′)
maxe∈E(S) ‖e‖

,

where E(S) denotes the set of edges of curves in S and ‖e‖ denotes the length of the edge e.

The bundledness is reminiscent of the global stretch — a measure of complexity on
geometric graphs — which was introduced by Erickson [16] and further analyzed by Bose et
al. [9]. The bundledness is closely related to the spread of the set of vertices and edges of the
input curves, in that it is lower bounded by the reciprocal of the spread (see Lemma 39).

I Definition 8 (spread). For a point set P in some metric space (M, dM), we define the
spread Φ(P ) as the ratio between the maximal and minimal pairwise distance of points in
P . Similarly, define the spread Φ(S) of a collection of sets as the ratio between the maximal
and minimal non-zero pairwise distances of sets in S, where the distance between two sets
A,B ⊂M is defined as dM(A,B) = mina∈A minb∈B dM(a, b).

With these definitions, our principal results can be summarized as follows (Section 5).

I Theorem 9. Given a set S of n polygonal curves in Xd,k and 0 < ε ≤ 1 one can construct
a data structure answering (1 + ε)-approximate nearest neighbour queries. The query time is
F (d, k, S, ε) logn+ F (d, k, S, ε)− log(ε), the expected preprocessing time is F (d, k, S, ε)n logn
and the space used is F (d, k, S, ε)n, where F (d, k, S, ε) = O

(
2O(d)k(1 + G(S)−1ε−1)

)k.
Replacing the bundledness with the more pessimistic spread of the vertices and edges of

the input curves we get the following result.

I Corollary 10. Given a set S of n polygonal curves in Xd,k and 0 < ε ≤ 1 one can construct
a data structure answering (1 + ε)-approximate nearest neighbour queries. The query time is
F (d, k, S, ε) logn+ F (d, k, S, ε)− log(ε), the expected preprocessing time is F (d, k, S, ε)n logn
and the space used is F (d, k, S, ε)n, where F (d, k, S, ε) = O

(
2O(d)kΦ(S)ε−1)k, where Φ(S)

denotes the spread of the set of vertices and edges of the curves in S.

In the special case that all curves in S are c-packed for some constant c > 0, that is the
length of the intersection of the curve with any ball is at most c times the balls radius, the
parameter F (d, k, S, ε) is instead in O

(
2O(d)(1 + G(S)−1ε−1)

)k, or, more pessimistically, in
O
(
2O(d)Φ(S)ε−1)k.
In Section 6 we also discuss sufficient conditions for our approach to generalize to other

settings: when a space of unbounded doubling dimension is approximated by a well-suited
family of subspaces of bounded doubling dimension.

CGT
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1.4 Technical overview
In Section 2, we introduce a subspace X∗ of (Xd,k,dF ) and show how the subspace relates
to (Xd,k,dF ). A significant part of our work is concerned with analyzing properties of this
subspace X∗. In Section 3, we present the analysis of the upper bound on the doubling
constant and dimension of X∗, which constitutes our main technical result, Theorem 21.
Roughly, we show that for a curve Q to have a small Fréchet distance (≤ ∆) to another
curve C there is only a small subset of Rd in which any vertex of Q can lie in. In fact, it
turns out that this subset can be covered by ≈ 2dkµ (Rd-)balls of radius ∆/2, depending
on the doubling dimension ≈ 2d of Rd. As Q consists of k vertices, Q is then described by
one of at most (2dkµ)k sequences of (Rd-)balls, implying that the doubling dimension is
at most log((2dkµ)k) ≈ k(d+ log(kµ)). We furthermore extend this analysis to the special
case that the curves are c-packed, resulting in an improvement in the upper bound. In
Section 4, we extend the lower bound construction from [15] to argue that our bounds on
the doubling dimension of X∗ are almost tight. In Section 5, we then use the bound on the
doubling dimension of X∗ to construct an (1 + ε)-ANN data structure based on the work of
Har-Peled and Mendel [22]. In Section 6, we then generalize these results to present a general
framework, which specifies how one can extend (1 + ε)-ANN data structures for spaces of
bounded doubling dimension to spaces of unbounded doubling dimension.

2 Curve spaces

I Definition 11 (doubling constant and dimension). Let (M, dM) be a metric space. Define
the r-ball in M by BMr (x) = {y ∈ M | dM(x, y) ≤ r}, as the closed ball of radius r > 0
centered at x. The doubling constant of (M, dM) is defined as the minimal number ν, such
that for any x ∈M and any r > 0 the ball BMr (x) of radius r is contained in the union of at
most ν balls with radius r/2. The doubling dimension of (M,dM) is defined as log2(ν).

We may omit the metric space in the notation of a ball whenever the metric space is
clear, writing Br(x) instead of BMr (x) for x ∈M.

It turns out that for k ≥ 3 the doubling dimension of (Xd,k,dF ) is unbounded [15]. A
straightforward modification to their construction yields the following theorem.

I Theorem 12. The doubling constant of (Xd,kΛ , dF ) is unbounded for any k ≥ 3 and Λ > 0.

Theorem 12 motivates the search for a subspace (X∗, dF ) of (Xd,kΛ , dF ) of bounded doubling
dimension. To answer (1 + ε)-ANN queries in Xd,kΛ , the ansatz is to map the input curves to
(X∗,dF ) and answer queries in this subspace. With this approach, the quality guarantee of
the (1 + ε)-ANN queries decreases by an additional additive factor, roughly depending on
the distortion of the map between (Xd,kΛ ,dF ) and (X∗,dF ).

I Definition 13 ((µ, ε)-curves). For any ε > 0 and µ ∈ N define the space of (µ, ε)-curves in
Xd,k as the subspace of (Xd,k, dF ) induced by the set of polygonal curves in Xd,k whose edge
lengths are all exact multiples of ε. We further require the edge lengths to be bounded by µε.
The space of (µ, ε)-curves in Xd,k is a natural subspace of (Xd,kµε ,dF ).

We may abuse notation slightly, and not specify the ambient space Xd,k of the space of
(µ, ε)-curves, if the ambient space is clear. We may likewise writeM when talking about the
metric space (M,dM), if the metric is clear.

I Lemma 14. Let P ∈ Xd,kΛ be a polygonal curve and ε > 0. We can construct a
(dΛ/εe+ 1, ε)-curve P ′ in Xd,k such that dF (P, P ′) ≤ ε/2 in O(k log(Λ/ε)) time.
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Figure 1 Example of a curve P ∈ Xd,kΛ in blue, and an ε-curve close to P resulting from Lemma 14
in red.

Proof. Refer to Figure 1. Let p1, . . . , pk be the vertices of P and P ′ = ∅. We begin by
adding p′1 = p1 to P ′. Now assume p′i−1 is the last vertex of P ′. Compute the value µi, such
that the magnitude |µiε − ‖pi − p′i−1‖| is minimal. Then add p′i = p′i−1 + (µiε)

pi−p′i−1
‖pi−p′i−1‖

to P ′. Note that by construction ‖pi − p′i‖ ≤ ε/2. Hence dF (P, P ′) ≤ ε/2. The length of
the edges of P ′ are bounded by (dΛ/εe+ 1)ε. Indeed, ‖pi − p′i‖ ≤ ε/2 and ‖pi − pi−1‖ ≤ Λ
imply that ‖p′i − p′i−1‖ ≤ Λ + ε. For the running time, for every i ≤ n the value µi such that
the magnitude |µiε− ‖pi − p′i−1‖| is minimal can be identified in O(log(Λ/ε)) time. This is
done by first identifying the smallest power of 2 larger than ‖pi − p′i−1‖/ε and then binary
searching over the integer multiples of ε up to this power of 2. As we do this once for every
edge, the claimed running time follows. J

The additive error incurred by mapping Xd,kΛ to the space of (M, ε)-curves in Xd,k for
M ≥ dΛ/εe+1 depends only on the distortion of the map. The Gromov-Hausdorff distance is
a related measure of the distance between metric spaces. For µ→∞ the space of (µ, ε)-curves
in Xd,k will have (depending on ε) small Gromov-Hausdorff distance to the ambient space
Xd,k of curves. We map any element from Xd,k into this subspace by rounding the length
of every edge to a multiple of ε, thereby moving the vertices by a small amount each time
(refer to Figure 1).

I Definition 15 (Gromov-Hausdorff distance). The Gromov-Hausdorff distance is a distance
measure on metric spaces. LetM and N be two metric spaces. Then the Gromov-Hausdorff
distance is defined as

dGH(M,N ) = inf
Z
{dZH(f(M), g(N )) | f :M→ Z, g : N → Z isometric embeddings},

where Z ranges over metric spaces and dZH(X,Y ) denotes the Hausdorff distance of two sets in
the metric space Z which is defined as max{supx∈X infy∈Y dZ(x, y), supy∈Y infx∈X dZ(x, y)}.

I Corollary 16. Let d, k and ε > 0 be given, µ → ∞, and denote by Cµ the space of
(µ, ε)-curves in Xd,k. Then dGH(Xd,k, Cµ)→ ε/2.

Proof. For every P ∈ Xd,k and ε > 0 there is a finite integer M <∞, such that P ∈ Xd,kMε.
Then by Lemma 14 there is a P ′ ∈ CM+1 with dF (P, P ′) ≤ ε/2. As Cµ is a natural subspace
of Xd,k for all µ ∈ N, the claim holds. J

3 Bounding the doubling dimension of the space of (µ, ε)-curves

In this section, we study the doubling dimension of the space of (µ, ε)-curves in Xd,k.
Unfortunately, our bound is non-constructive. As such, it does not provide a doubling oracle
that, for a given ball of radius r in the metric space, outputs a set of balls of radius r/2
which cover the ball of radius r.

CGT
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3.1 Properties of the Euclidean space

Before diving into the analysis of the doubling dimension of the space of (µ, ε)-curves, we
begin by analyzing properties of the ambient space Rd. For this we often inspect so called
∆-neighbourhoods of subsets of Rd. For any subset A the ∆-neighbourhood of A is defined
by N∆(A) = {x ∈ Rd | ∃a ∈ A : d(x, a) ≤ ∆}. Note that the ∆-neighbourhood of a single
point x coincides with a ball of radius ∆ centered at x.

It is well-known that the doubling dimension of Rd under the Euclidean norm is in Θ(d).
We prove a more general statement which relates the volume of some arbitrary set to the
amount of balls needed to cover it. For this, we denote by λd the Lebesgue measure in Rd
and by λd(A) the volume of a (measurable) set A ⊂ Rd.

I Lemma 17. Let A ⊂ Rd be a bounded set, and let r > 0 be fixed. Then there is a set
of points C ⊂ A of cardinality dλd(Nr/2(A))/V dr/2e such that A ⊂

⋃
c∈C Br(c), where V dr/2

denotes the volume of a d-dimensional ball of radius r/2.

Proof. We construct the set C greedily. For this we start with C = ∅, and then iteratively
add any point from A \

⋃
c∈C Br(c), until A ⊂

⋃
c∈C Br(c). As any two points in C have a

distance of at least r, balls centered at points of C with radius r/2 are disjoint and clearly
contained in Nr/2(A). Thus the number of points in C is bound by dλd(Nr/2(A))/V dr/2e. J

I Lemma 18. For any r > 0 and c > 1, any ball Br(p) ⊂ Rd can be covered by O((2c+ 1)d)
balls of radius r/c.

Proof. This follows from the classical result that V dr = πd/2

Γ(d/2+1)r
d, where Γ denotes the

Gamma-function [31]. As Nr/2c(Br(p)) = Br(2c+1)/2c(p), Lemma 17 implies that any Br(p)
can be covered with d(r(2c+ 1)/2c)d/(r/2c)de = O((2c+ 1)d) balls of radius r/c. J

Later on, we will use this lemma to retrieve a set of points, namely the centers of the
balls used in such a covering, as candidates for vertices of curves that will be centers of balls
in Xd,k.

When analyzing the doubling dimension, we often consider what an edge might look like
that has Fréchet distance at most ∆ > 0 to a subcurve of an input curve. The basic tool we
use for this analysis is the observation that the edge under consideration then is a ∆-stabber
of the vertices (and indeed any ordered set of points along the subcurve) of the subcurve.

I Definition 19 (∆-stabber). Let an ordered set of points (p1, . . . , pn) in Rd be given. A
polygonal curve l : [0, 1]→ Rd between two points a, b ∈ Rd is called a ∆-stabber of (p1, . . . , pn)
if there are values 0 ≤ t1 ≤ . . . ≤ tn ≤ 1 such that ‖l(ti)− pi‖ ≤ ∆ for all 1 ≤ i ≤ n.

The notion of ∆-stabbers has been introduced by Guibas et al. [19], and is closely related
to the Fréchet distance. Any edge that has Fréchet distance at most ∆ to a polygonal curve
defined by vertices p1, . . . , pn is a ∆-stabber of the ordered point set (p1, . . . , pn). Similarly,
a ∆-stabber of the ordered point set (p1, . . . , pn) contains an edge that has Fréchet distance
at most ∆ to the polygonal curve defined by the vertices p1, . . . , pn.

I Observation 20. Let a polygonal curve P and ∆ > 0 be given. Let e = p q be an edge such
that for given 0 ≤ s ≤ t ≤ 1 the Fréchet distance dF (P [s, t], e) is at most ∆. Then for any
s ≤ m ≤ t the edge e is a ∆-stabber of (P (s), P (m), P (t)).
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P

P (s)

Lλ,∆(P, s)

∆

p

q

P (t)

λ

p q

∆

Figure 2 Illustration of the set Lλ,∆(P, s) in dark green, together with the points p and P (t)
realizing a point q in Lλ,∆(P, s), that is ‖p− q‖ = λ and dF (P [s, t], p q) ≤ ∆.

3.2 Packing the metric ball
The result we now want to prove is the following theorem. Proving it constitutes the main
bulk of work in this section.

I Theorem 21. Let k, µ, d ∈ N and ε > 0. The doubling constant of the space of (µ, ε)-curves
in Xd,k is bounded by O(43dkµ)k and thus the doubling dimension of the space of (µ, ε)-curves
is bounded by O(k(d+ log(kµ))).

Let P be a (µ, ε)-curve in Xd,k. Our objective is to cover the ∆-neighbourhood of P with
respect to dF with balls of radius ∆/2. We encounter the question of where, given p ∈ Rd,
we may place a second point q such that there is a subcurve of P that is close to p q. Indeed,
for any curve Q with dF (P,Q) ≤ ∆, the endpoint q of any edge p q of Q is a potential such
point for the start point p. Thus if we answer the above stated question, we can iteratively
build up any curve Q with dF (P,Q) ≤ ∆.

I Definition 22. Let P be a polygonal curve and λ ≥ 0 and ∆ ≥ 0. For s ∈ [0, 1] define the
locus of edge endpoints of edges close to subcurves of P starting at the parameter s as the set

Lλ,∆(P, s) =
{
q ∈ Rd | ∃p ∈ Rd and ∃t ∈ [s, 1] with ‖p− q‖ = λ, dF (P [s, t], p q) ≤ ∆

}
.

The following lemma motivates discretising the lengths of edges, as for a fixed length λ
the set Lλ,∆(P, s) is contained in a single ball of constant size.

I Lemma 23. Let P be a polygonal curve. Let λ ≥ 0 and ∆ ≥ 0 be given. Then for every
s ∈ [0, 1] there is a point p∗ ∈ Rd, such that

Lλ,∆(P, s) ⊂ B5∆(p∗).

Proof. Assume Lλ,∆(P, s) is nonempty, as otherwise we are done. Similarly assume λ ≥ 4∆
as otherwise Lλ,∆(P, s) is trivially contained in Bλ+∆(P (s)) ⊂ B5∆(P (s)). Now let t∗ ≥ s be
the smallest value such that ‖P (s)− P (t∗)‖ ≥ λ− 2∆. Then we claim that the sought-after
point is p∗ = P (t∗).
For the remainder of this proof refer to Figure 3. Let q ∈ Lλ,∆(P, s) be given. Then by
definition there is a point p and a value t, such that p q has length λ and dF (P [s, t], p q) ≤ ∆.
Thus ‖P (s) − p‖ ≤ ∆ and similarly ‖P (t) − q‖ ≤ ∆. But then by the triangle inequality
‖P (t)− P (s)‖ ≥ λ− 2∆. Thus t ≥ t∗. Hence, p q is a ∆-stabber of (P (s), P (t∗), P (t)). This
implies that there is a point m along p q with ‖m− P (t∗)‖ ≤ ∆. As m lies on p q, we have

CGT
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∆

P (s)

P (t∗)
λ− 2∆

p
qm

5∆

P (t)

P

Figure 3 Illustration to the proof of Lemma 23.

that ‖p−q‖ = ‖p−m‖+‖m−q‖. As ‖P (s)−P (t∗)‖ ≥ λ−2∆, we get that ‖p−m‖ ≥ λ−4∆,
and thus ‖m− q‖ ≤ 4∆. And thus finally ‖P (t∗)− q‖ ≤ 5∆, implying the claim. J

I Definition 24. Let P be a polygonal curve and λ ≥ 0 and ∆ ≥ 0. For p ∈ Rd define the
locus of edge endpoints of edges starting at p which are close to subcurves of P as the set

Lλ,∆(P, p) =
{
q ∈ Rd

∣∣ ‖p− q‖ = λ and ∃s, t with 0 ≤ s ≤ t ≤ 1, dF (P [s, t], p q) ≤ ∆
}
.

Similarly to Lemma 23 we can identify balls that cover the entirety of Lλ,∆(P, p) for
given P, λ,∆ and p. However, instead of a constant number of balls we need up to k balls of
constant radius to cover this set.

I Lemma 25. Let P ∈ Xd,k be a polygonal curve. Let λ ≥ 0 and ∆ ≥ 0 be given. Then for
every p ∈ Rd there are k points p∗1, . . . , p∗k ∈ Rd such that

Lλ,∆(P, p) ⊂
k⋃
i=1

B5∆(p∗i ).

Proof. The set I = {s ∈ [0, 1] | P (s) ∈ B∆(p)} can be described as a disjoint union of at
most k closed intervals, as the complexity of P is bounded by k. Assume that it is described
by exactly k such intervals, that is, I =

⋃k
i=1[li, ri].

It suffices to show that Lλ,∆(P, p) ⊂
⋃k
i=1 Lλ,∆(P, li), as Lemma 23 then implies the

claim. Assume that an arbitrary q ∈ Lλ,∆(P, p) is given. Then by definition there are values
0 ≤ s ≤ t ≤ 1 such that dF (P [s, t], p q) ≤ ∆. This implies that ‖p− P (s)‖ ≤ ∆, and hence
s ∈ I and in turn s ∈ [li, ri] for some 1 ≤ i ≤ k. But then the subcurve P [li, s] is contained in
B∆(p), and thus dF (P [li, t], p q) ≤ ∆ implying that q ∈ Lλ,∆(P, li) and thus the claim. J

I Corollary 26. For every polygonal curve P in Rd, ∆ > 0, λ > 0, c > 1 and point p ∈ Rd,
the set N∆/c

(
Lλ,(1+c−1)∆(P, p)

)
can be covered by a set of balls of radius ∆/c centered at

O(k(10c+ 3)d) points.

Proof. For any point p ∈ Rd, ∆ > 0 and c > 1, the sets N∆/c(B5∆(p)) and B(5+c−1)∆(p)
coincide, so Lemma 18 and Lemma 25 imply the claim. J

I Lemma 27. Let P be a polygonal curve. Let λ ≥ 0, ∆ ≥ 0 and c ≥ 1 be given. Then for
every p ∈ Rd and p′ ∈ Rd with ‖p− p′‖ ≤ ∆/c we have that

Lλ,∆(P, p) ⊂ N∆/c
(
Lλ,(1+c−1)∆(P, p′)

)
.
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Proof. Let q ∈ Lλ,∆(P, p). This implies that there are values 0 ≤ s ≤ t ≤ 1, such that
dF (P [s, t], p q) ≤ ∆ and ‖p − q‖ = λ. Let q′ = q + (p′ − p). Then, as ‖p − p′‖ ≤ ∆/c
and thus ‖q − q′‖ ≤ ∆/c, we get that dF (p q, p′ q′) ≤ ∆/c by Observation 20, and thus
dF (P [s, t], p′ q′) ≤ (1 + c−1)∆. Finally, ‖p′ − q′‖ = ‖p− q‖ = λ and thus the point q′ lies in
Lλ,(1+c−1)∆(P, p′), implying the claim. J

We now prove a stronger version of Theorem 21, which allows us to analyze the doubling
constant of (µ, ε)-curves in Xd,k.

I Lemma 28. Let k, µ, d ∈ N and ε > 0. Let a (µ, ε)-curve P in Xd,k be given, as well as
∆ > 0 and c ≥ 1. There is a family of curves CP ⊂ Xd,kµε+∆/c of size O(kµ(10c+ 3)d)k, such
that for any (µ, ε)-curve Q with dF (P,Q) ≤ ∆ there is a Q∗ ∈ CP with dF (Q,Q∗) ≤ ∆/c.

Proof. We construct the set CP as follows. First, choose an element (m1, . . . ,mk−1) ∈
{1, . . . , µ}k−1. Next, choose one circle center of a cover of B∆(P (0)) consisting of O((2c+1)d)
many balls of radius r/c, which exists by Lemma 18. Iteratively choose one point among
the circle centers of a cover of N∆/c

(
Lmi−1ε,(1+c−1)∆(P, q∗i−1)

)
of Corollary 26, consisting of

O(k(10c+3)d) many balls of radius r/c as the vertex q∗i of Q∗ for i ≤ k. Then Q∗ ∈ Xd,kµε+∆/c,
as for any i the fact that q∗i lies in N∆/c

(
Lmi−1ε,(1+c−1)∆(P, q∗i−1)

)
implies that there is a

point q ∈ Lmi−1ε,(1+c−1)∆(P, q∗i−1), with ‖q∗i−1 − q‖ = mi−1ε and ‖q − q∗i ‖ ≤ ∆/c. Hence,
‖q∗i − q∗i−1‖ ≤ m1ε + ∆/c ≤ µε + ∆/c. To account for all the choices, we have that
|CP | = O(kµ(10c+ 3)d)k.

Let Q be a given (µ, ε)-curve, with dF (P,Q) ≤ ∆. The curve Q consists of k − 1 edges
and induces an ordered set (m1, . . . ,mk−1) ∈ {0, . . . , µ}k−1 representing the lengths of
the edges in order. Let q1, . . . , qk be the vertices of Q. For all 1 ≤ i ≤ k it holds that
qi ∈ Lmi−1ε,∆(P, qi−1), by construction.

As dF (P,Q) ≤ ∆, the first vertex q1 lies in B∆(P (0)), and thus there is a point q∗1
of the cover of B∆(P (0)) consisting of balls of radius r/c, that lies at distance at most
∆/c to q1. For every subsequent qi, by Lemma 27 and because qi ∈ Lmi−1ε,∆(P, qi−1),
qi ∈ N∆/c

(
Lmi−1ε,(1+c−1)∆(P, q∗i−1)

)
and thus there is a point q∗i of the ∆/c-cover of

N∆/c
(
Lmi−1ε,(1+c−1)∆(P, q∗i−1)

)
that is at distance at most ∆/c to qi. This implies that

there is an element Q∗ (defined by exactly this choice of points) in CP that has distance
ddF (Q,Q∗) ≤ ∆/c and thus, by Observation 5, it holds that dF (Q,Q∗) ≤ ∆/c. J

We are now ready to prove Theorem 21 as a straightforward application of Lemma 28.

Proof of Theorem 21. Let P be a (µ, ε)-curve in Xd,k and a value ∆ be given. By Lemma 28,
there is a family CP of curves of size O(kµ(43)d)k in Xd,kµε+∆/4 ⊂ Xd,k, such that for any
(µ, ε)-curve Q with dF (P,Q) ≤ ∆ there is curve Q∗ in CP with dF (Q,Q∗) ≤ ∆/4. For any
Q∗ ∈ CP identify some (µ, ε)-curve Q̂∗ such that dF (Q∗, Q̂∗) ≤ ∆/4. If no such element
exists, ignore Q∗. Otherwise for any (µ, ε)-curve Q with dF (P,Q) ≤ ∆ there is a curve Q∗
in CP with dF (Q,Q∗) ≤ ∆/4, and thus by the triangle inequality there is a (µ, ε)-curve Q̂∗
with dF (Q, Q̂∗) ≤ ∆/2, proving the bounded doubling dimension. J

I Corollary 29. Let k, µ, d ∈ N and ε > 0. The doubling dimension of the space of (µ, ε)-
curves in Xd,k under the discrete Fréchet distance is bounded by O(k(d+ log(kµ))).

Proof. This is a consequence of the proof of Lemma 28 and Theorem 21. By Observation 5,
for any two curves P and Q in Xd,k it holds that dF (P,Q) ≤ ddF (P,Q), and thus any ∆-ball
centered at a curve P under the discrete Fréchet distance is contained in the ∆-ball under the
continuous Fréchet distance. In the proof of Lemma 28 the ∆-ball is covered by ∆/2-balls
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under the discrete Fréchet distance, thus a proof similar to that of Theorem 21 implies the
claim. J

3.3 Improvements for c-packed curves

In this section, we add the assumption that the curves in the space of (µ, ε)-curves are
c-packed, which leads to an improvement of the above bounds on the doubling dimension.

I Definition 30 (c-packed). A curve P is said to be c-packed for some c > 0, if for any ball
of radius r, the length of P inside the ball is at most cr. The set of c-packed (µ, ε)-curves in
Xd,k is defined as the intersection of the set of (µ, ε)-curves with the set of c-packed curves.

I Lemma 31. Let P ∈ Xd,k be a polygonal c-packed curve with complexity at most k. Let
λ ≥ 0 and ∆ ≥ 0 be given. Then for every p ∈ Rd there are 2c = O(c) points p∗1, . . . p∗2c ∈ Rd
such that

Lλ,∆(P, p) ⊂
2c⋃
i=1

B5∆(p∗i ).

Proof. Assume λ ≥ 5∆ as otherwise Lλ,∆(P, p) ⊂ B5∆(p) clearly holds, implying the claim.
For the sake of contradiction, assume that Lλ,∆(P, p) cannot be covered by 2c balls of radius
5∆. This implies, that there are at least 2c+ 1 points {p1, . . .} =: P in Lλ,∆(P, p) with a
pairwise distance of at least 10∆. For any pi ∈ P we know that ‖pi − p‖ = λ and there are
values si < ti such that dF (P [si, ti], p pi) ≤ ∆. For any two distinct pi, pj ∈ P the points
pi, pj and p form an isosceles triangle with side lengths λ, λ and ‖pi − pj‖ ≥ 10∆. This
implies that the distance to pj from any point q along p pi is at least 2∆. This means that tj
cannot lie in the interval [si, ti] as ‖pj − P (tj)‖ ≤ ∆. This in turn implies that all intervals
[s1, t1], . . . are pairwise disjoint. We have thus identified 2c + 1 disjoint (in the domain)
subcurves of P with a total length of at least (2c+ 1)(λ− 2∆), contained in the ball Bλ(p).
However, since λ ≥ 5∆, we have that (2c+ 1)(λ− 2∆) > cλ, contradicting the fact that P is
c-packed. This in turn implies the claim. J

I Corollary 32. Let k, µ, d ∈ N and c, ε > 0. The doubling constant of the space of c-packed
(µ, ε)-curves in Xd,k is bounded by O(43dcµ)k and thus its doubling dimension is bounded by
O(k(d+ log(cµ))).

Proof. This follows from a straightforward modification of Theorem 21 via Lemma 31. J

4 Lower bounds for the doubling constant of (µ, ε)-curves

In this section we want to show that the bound on the doubling dimension of O(k(d+log(kµ)))
is not too pessimistic. We begin with a straight-forward argument which implies a lower
bound of Ω(d), before we discuss the lower bound of Ω(k logµ), resulting in a lower bound of
Ω(d+ k logµ).

The lower bound of Ω(d) follows trivially as the space of (µ, ε)-curves in Xd,1 consists of
every singleton in Rd and thus the doubling dimension of the (µ, ε)-curves in Xd,1 must be
at least that of Rd. For spaces with curves of higher complexity any cover of a ball (with
respect to dF ) the bound follows similarly, by inspecting the starting points of the curves.
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C

G(2,6,10)

G(5,7,12)

N

Figure 4 Illustration of the construction from Lemma 33 of two (5, 1)-curves G(2,6,10) and G(5,7,12)
in X1,9 that have Fréchet distance 1/2 to the center curve C at the top.

4.1 Lower bound of Ω(k log µ)
In this section, we give a lower bound for the doubling dimension of both c-packed and
non-c-packed (µ, ε)-curves in Xd,k that shows the necessity of the factor µk in the bound
of the doubling constant. The construction we give is an adaptation of a construction by
Driemel et al. [15] that shows an unbounded doubling dimension for the space (X1,3,dF ).

I Lemma 33. Let d = 1. Given µ > 1, k ∈ N and m ≤ k/2, we can construct a (µ, 1)-curve
C, of complexity k − 2m, and

((k−2m)µ
m

)
(µ, 1)-curves Gi, such that dF (C,Gi) ≤ 1/2 for all

i. Additionally, for all i 6= j there is no (µ, 1)-curve X in Xd,k such that dF (X,Gi) ≤ 1/4
and dF (X,Gj) ≤ 1/4.

The main intuition behind this proof is a variant of the main ingredient of the proof of
Theorem 12. Namely, we imagine a center curve C in R1 (refer to Figure 4) that goes strictly
to the right (in positive direction) for some length L. Modifying C by introducing small
zig-zags of length 1 results in a new curve G that has Fréchet distance 1/2 to C. Importantly,
any curve that has Fréchet distance 1/4 to G must also imitate the zig-zag course whenever
G has a zig-zag. Now imagine there are two curves G and G′ resulting from C by introducing
m zig-zags each. The Fréchet distance of G and G′ may be 1/2, but as long as the introduced
zig-zags are sufficiently far from one another, any (µ, 1)-curve, that has Fréchet distance
≤ 1/4 to G has Fréchet distance > 1/4 to G′. Conversely, we also show that there is also no
(µ, 1)-curve M such that {G,G′} ⊂ B1/4(M).

Proof of Lemma 35. Define C via the points (c1, . . . , ck−2m+1), where ci = ((i− 1) · µ) for
1 ≤ i ≤ k − 2m+ 1. We now identify a large set of curves such that no two distinct elements
of this set are at a distance at most 1/4 to any (µ, 1)-curve in X1,k. For this, choose an
ordered subset (n1, . . . , nm) ⊂ {0, . . . , (k − 2m)µ − 1}. Clearly, there are

((k−2m)µ
m

)
such

choices. Based on the choice, we construct a curve G(n1,...,nm) from C, first cutting m+ 1
pieces C0, . . . , Cm from C, where C0 goes from 0 to n1 + 1, Ci from ni to ni+1 + 1 for
1 ≤ i ≤ m, and Cm from nm to ((k − 2m)µ). For 1 ≤ i < m, construct curves Ti defined
by two vertices si = (ni + 1), ti = (ni). Then, retrieve G(n1,...,nm) via the concatenation
C0 ∗ T1 ∗C1 ∗ . . . ∗ Tm ∗Cm. The set of curves constructed in this way forms the sought-after
large set of curves. We show that G(n1,...,nm) consists of k edges. For this we show that every
cut introduces 2 new edges. If neither ni nor ni + 1 are vertices of C, then we are done,
so assume that ni is a vertex of C. Then we introduce exactly two new edges: one from
(ni) to (ni + 1) and one from (ni + 1) to (ni). Similarly, if ni + 1 is a vertex of C, we also
introduce two new edges, one from (ni + 1) to (ni) and one from (ni) to (ni + 1). Observe
that dF (C,G(n1,...,nm)) = 1/2, as C goes to the right, whereas G(n1,...,nm) follows C except
in the introduced pieces Ti, where it goes left for a distance of 1.

CGT



6:14 (1+ε)-ANN Data Structure for Curves via Subspaces of Bounded Doubling Dimension

Let X be a curve that has Fréchet distance at most 1/4 to some curve G = G(n1,...,nm)
constructed above. Let ni ∈ (n1, . . . , nm). Then the vertex si = (ni + 1) and ti = (ni) define
the connecting piece Ti between Ci−1 and Ci of G. Now, X has to first enter the interval
[ni + 3/4, ni + 5/4] and then [ni − 1/4, n1 + 1/4]. As these two intervals are disjoint and
ni < ni + 1, the first interval lies to the right of the second interval. By construction, the
vertex of G before si also lies to the left of ti. Similarly, the vertex after ti lies to the right
of si. Hence, X has a vertex to the left of ti, then a vertex in [ni + 3/4, ni + 5/4], then a
vertex inside [ni − 1/4, ni + 1/4], and subsequently a vertex to the right of si. Thus, a curve
X also has to go to the left near ni + 1. Note that as every edge of X has to have a length
which is a multiple of 1, any curve that does not go left near ni + 1 has to have a Fréchet
distance of at least 1/2 to X. This has to hold for all ni ∈ (n1, . . . , nm). Since for any two
distinct such constructed curves, there is a point where one travels to the left while the other
does not, this then implies the claim as there are

((k−2m)µ
m

)
such constructed curves. J

I Corollary 34. For d = 1 and given µ and k, the doubling dimension of the space of
(µ, 1)-curves in Xd,k is in Ω(k logµ).

Proof. Apply m = k/3 to Lemma 33. This, together with the fact that(
(k/3)µ
k/3

)
≥ ((k/3)µ)(k/3)

(k/3)(k/3) = Ω
(
µ(k/3)

)
holds implies the claim. J

I Theorem 35. For d = 1 and given µ, k and ε > 0, the doubling dimension of the space of
(µ, ε)-curves in Xd,k is in Ω(d+ k logµ).

Proof. This is a straight forward consequence of Corollary 34 and the trivial Ω(d) lower
bound. J

I Corollary 36. For d = 1, c ≥ 6 and given µ, k and ε > 0, the doubling dimension of the
space of c-packed (µ, ε)-curves in Xd,k is in Ω(d+ k logµ).

Proof. The constructed curves are clearly 6-packed. Thus, Theorem 35 implies the claim. J

5 Approximate Nearest Neighbour

Har-Peled et al. [22] showed that (1 + ε)-ANN can be solved in metric spaces of bounded
doubling dimension.

I Theorem 37 ([22]). Given a set S of n points in a metric spaceM of bounded doubling
dimension ν, one can construct a data structure for answering (1 + ε)-approximate nearest
neighbour queries. The query time is 2O(ν) logn+ ε−O(ν), the expected preprocessing time is
2O(ν)n logn and the space used is 2O(ν)n.

A careful reading reveals an important specification for our purposes, namely, that the
doubling dimension is that of the n-point metric space defined by S induced by the metric
space M and not of the ambient metric space M. Note that by Lemma 38 the doubling
dimension of the metric space induced on the subset is at most twice the doubling dimension
of the ambient space. For an example where the doubling dimension increases, refer to Figure
5.

I Lemma 38. Let (M,dM) be a metric space, and let S be some subset of M. Then the
doubling dimension of (S,dM) is at most twice the doubling dimension of (M,dM).
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BR
1,2(0)

BR
0.6(−0.6) ∪ BR

0.6(0.6) = BR
0 (1.2)

BZ
1.2(0) = {−1, 0, 1}

BZ
0.6(−1) ∪ BZ

0.6(0) ∪ BZ
0.6(1) = {−1} ∪ {0} ∪ {1}

Figure 5 Example of a subset Z of the metric space R whose doubling dimension is larger than
that of its ambient space. The disk centers are marked by circles.

Proof. Let ν be the doubling dimension of M. Let s ∈ S and r > 0 be given and let
BSr (s) ⊂ S be the ball in S, of radius r and centered at s, i.e., BSr (s) = BMr (s) ∩ S. But
BMr (s) can be covered by (2ν)2 balls of radius r/4. For any such ball check if the intersection
with S is nonempty. If this is the case, pick some element from this intersection, and center
a ball in S of radius r/2 around it. Clearly, any such larger ball contains the intersection of
the smaller ball with S. Therefore, BSr (s) is contained in the union of at most (2ν)2 balls of
radius r/2 in S, which implies the claim, as log2((2ν)2) = 2ν. J

By Theorem 21, we know that the doubling dimension of the space of (µ, ε)-curves in
Xd,k is bounded. We further know that for any ε > 0 we can map any curve of Xd,kΛ into the
space of (dΛ/εe+ 1, ε)-curves in Xd,k with a distortion of at most ε/2, by Lemma 14. Hence,
Theorem 37 together with Lemma 38 imply Theorem 6, a central piece to constructing a data
structure solving the (1 + ε)-ANN problem for polygonal curves under the Fréchet distance.

I Theorem 6. Given a set S of n polygonal curves in Xd,kΛ and parameters 0 < ε < 1 and
ε′ > 0, one can construct a data structure that for given q ∈ Xd,k outputs an element s∗ ∈ S
such that for all s ∈ S it holds that dF (s∗, q) ≤ (1 + ε)dF (s, q) + ε′. The query time is
O
(
2O(d)k(1 + Λ/ε′)

)k logn+O
(
2O(d)k(1 + Λ/ε′)

)−k log(ε), the expected preprocessing time
is O

(
2O(d)k(1 + Λ/ε′)

)k
n logn and the space used is O

(
2O(d)k(1 + Λ/ε)

)k
n.

Proof. Define ε̂ = ε′/2. Let µ = dΛ/ε̂e+ 1 = Θ(1 + Λ/ε′). We begin by simplifying every
polygonal curve s ∈ S via Lemma 14, resulting in a set S′ of (µ, ε̂)-curves. This takes
O (log(µ)nk) time, which is in O (2νn). As S′ lies in the space of (µ, ε̂)-curves, the doubling
dimension of the set S′ with the Fréchet distance is bounded by ν = O(k(d+log(k(1+Λ/ε′))))
via Theorem 21 and Lemma 38. Note that for every s ∈ S and its simplification s′ ∈ S′ it
holds that dF (s, s′) ≤ ε̂/2. We apply Theorem 37 to the set S′ and ε. Note that Theorem 37
assumes that the distance between any two points in the metric space of (µ, ε)-curves can be
computed in O(1) time. However, the computation of the continuous Fréchet distance takes
polynomial time in k. On the other hand, both 2k log k and ε−k log k dominate poly(k) for
ε < 1. Thus the running time is indeed as claimed. We then query the data structure with q,
returning an element ŝ′ such that for every s′ ∈ S′ it holds that dF (q, ŝ′) ≤ (1 + ε)dF (q, s′).
Lastly, the element of S returned by the data structure will be the element ŝ ∈ S which
corresponds to ŝ′. We then get for every s ∈ S that

dF (q, ŝ) ≤ dF (q, ŝ′) + ε̂/2 ≤ (1 + ε)dF (q, s′) + ε̂/2 ≤ (1 + ε)(dF (q, s) + ε̂/2) + ε̂/2
≤ (1 + ε)dF (q, s) + ε̂+ εε̂/2 = (1 + ε)dF (q, s) + ε̂(1 + ε/2)
≤ (1 + ε)dF (q, s) + ε′. J
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To get rid of the additive error, we want to set ε′ to O(mins6=s′∈S dF (s, s′)). As ε′ impacts
the running time, we reformulate the running time in terms of the spread.

Note that this measure is scale- and translation-independent, as translating all elements
in S by the same offset changes neither their pairwise Fréchet distances nor the length of
the edges of the curves. Similarly scaling the elements of S scales both the pairwise Fréchet
distances as well as the length of the edges of the curves, thus not changing the bundledness.

I Lemma 39. Given a set of curves S ∈ Xd,k, then

G(S)−1 = O(Φ(S))

where Φ(S) denotes the spread of the set of vertices and edges of curves in S.

Proof. Observe that no two curves in S have a Fréchet distance of 0. Note that the Fréchet
distance between two curves P and Q is approximated up to a constant by the Euclidean
distance of either one vertex of P and one vertex of Q or the Euclidean distance of a vertex
and an edge (one of P and one of Q) as sets. Thus

min
s 6=s′∈S

dF (s, s′) = Ω

 min
o,o′∈V (S)∪E(S)

d(o,o′)>0

d(o, o′)


where V (S) denotes the set of vertices and E(S) denotes the set of edges defining the curves
in S. Further note that as the length of any edge of a curve s in S is defined as the distance
of two vertices defining s. As such, observe that

max
s∈S,e∈E(s)

‖e‖ ≤ max
p,q∈V (S)

d(p, q) ≤ max
o,o′∈V (S)∪E(S)

d(o, o′).

Thus the claim follows. J

I Theorem 9. Given a set S of n polygonal curves in Xd,k and 0 < ε ≤ 1 one can construct
a data structure answering (1 + ε)-approximate nearest neighbour queries. The query time is
F (d, k, S, ε) logn+ F (d, k, S, ε)− log(ε), the expected preprocessing time is F (d, k, S, ε)n logn
and the space used is F (d, k, S, ε)n, where F (d, k, S, ε) = O

(
2O(d)k(1 + G(S)−1ε−1)

)k.
Proof. Let ε′ = ε/4 and ε′′ = ε′ (mins6=s′∈S dF (s, s′)). Let E(S) be the set of edges of curves
in S and let further Λ = maxe∈E(S) ‖e‖, thus clearly S ⊂ Xd,kΛ . We then apply Theorem 6
with ε′ and ε′′ resulting in the described data structure. Let q ∈ Xd,k be given. Let s∗ be
the element in S minimizing the distance to q. Querying the data structure with q results in
an element ŝ with the the property that

dF (q, ŝ) ≤ (1 + ε′)dF (q, s∗) + ε′
(

min
s6=s′∈S

dF (s, s′)
)
.

We now look at two different cases. First assume (2+ε′)dF (q, s∗) < (1−ε′) mins6=s′∈S dF (s, s′).
But then for every s′ 6= s∗ we know that

dF (q, s′) ≥ dF (s∗, s′)− dF (q, s∗) ≥ min
s6=s′∈S

dF (s, s′)− dF (q, s∗)

> (1− ε′)
(

min
s6=s′∈S

dF (s, s′)
)

+ ε′
(

min
s6=s′∈S

dF (s, s′)
)
− dF (q, s∗)

= (1 + ε′)dF (q, s∗) + ε′
(

min
s 6=s′∈S

dF (s, s′)
)
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and thus ŝ = s∗, implying dF (q, ŝ) ≤ (1 + ε)dF (q, s∗).
Now assume (2 + ε′)dF (q, s∗) ≥ (1− ε′) mins6=s′∈S dF (s, s′). Then we know that

dF (q, ŝ) ≤ (1 + ε′)dF (q, s∗) + ε′
(

min
s 6=s′∈S

dF (s, s′)
)

≤ (1 + ε′)dF (q, s∗) + ε′
(

2 + ε′

1− ε′

)
dF (q, s∗).

Now since ε ≤ 1, we know that ε′ ≤ 1/4 and thus 2+ε′
1−ε′ ≤ 3. This then concludes the

case-distinction, as

dF (q, ŝ) ≤ (1+ε′)dF (q, s∗)+ε′
(

2 + ε′

1− ε′

)
dF (q, s∗) ≤ (1+4ε′)dF (q, s∗) = (1+ε)dF (q, s∗).

Regarding the running time, observe that Λ/mins 6=s′∈S dF (s, s′) = G(S)−1. Hence, as
ε′ = Θ(ε) and ε′′ = Θ(ε (mins6=s′∈S dF (s, s′))), the preprocessing time, query time and space
is as claimed. J

I Corollary 10. Given a set S of n polygonal curves in Xd,k and 0 < ε ≤ 1 one can construct
a data structure answering (1 + ε)-approximate nearest neighbour queries. The query time is
F (d, k, S, ε) logn+ F (d, k, S, ε)− log(ε), the expected preprocessing time is F (d, k, S, ε)n logn
and the space used is F (d, k, S, ε)n, where F (d, k, S, ε) = O

(
2O(d)kΦ(S)ε−1)k, where Φ(S)

denotes the spread of the set of vertices and edges of the curves in S.

Proof. This is a direct consequence of Theorem 9 and Lemma 39 together with the fact that
the spread of any collection of sets is at least 1, implying (1 + Φ(S)ε−1) = O(Φ(S)ε−1), since
both Φ(S) ≥ 1 and ε ≤ 1. J

6 Generalization to arbitrary metric spaces

In this section, we observe that our techniques directly generalize to other metric spaces. In
particular, we can solve (1+ε)-ANN in any space with unbounded doubling dimension as long
as a subspace with bounded doubling dimension that is close (under the Gromov-Hausdorff
distance) exists. This approach is closely related to that of Sheehy and Seth [34] in that they
extended Clarkson’s algorithm for finding a λ-net in some metric space X if there is another
space of bounded doubling dimension with Gromov-Hausdorff distance at most λ/3 to X.

I Definition 40 (tractably nearly-doubling space). LetM be a metric space. We sayM is
tractably nearly-doubling if there are functions νM : R→ R and ρM :M× R→ R such that
for every ε > 0 there is some subspace Mε ⊂ M with doubling dimension at most νM(ε)
and projection πε :M→Mε. Furthermore we require dM(s, πε(s)) ≤ ε for any s ∈M and
the element πε(s) ∈Mε can be computed in ρM(s, ε) time.

Observe that for a tractably nearly-doubling spaceM the Gromov-Hausdorff distance
dGH(M,Mε) is at most ε. Note that by Lemma 14 and Theorem 21, the space Xd,kΛ is
tractably nearly-doubling for any d, k ∈ N and Λ > 0. The proof of the following lemma and
theorem conceptually are the same proof as for Theorem 6 and Theorem 9.

I Lemma 41. LetM be a metric space, and let S ⊂M be a set of n points and ε > 0. Let
M′ ⊂M be some subspace of doubling dimension ν, and let S′ ⊂M′ be another set with a
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surjection π : S → S′ with a running time of O(1). Then one can compute a data structure
which for given q ∈M outputs ŝ ∈ S, such that for every s ∈ S

dM(q, ŝ) ≤ (1 + ε)dM + (2 + ε)
(

max
s∈S

dM(s, πε(s))
)
.

The expected preprocessing time is 2O(ν) + ε−O(ν) and the space used is 2O(d)n logn, with the
query time being 2O(ν) logn+ ε−O(ν), where ν is the doubling dimension ofM′.

Proof. This proof is parallel to the proof of Theorem 6. We first store the inverse map
π−1 : S′ → S in O(n) time. We then compute the data structure from Theorem 37 on the set
S′. This takes 2O(ν) + ε−O(ν) expected preprocessing time and 2O(ν)n logn space. Further
the query time for this data structure is 2O(ν) logn+ ε−O(ν), as ν is the doubling dimension
ofM′.

Then for any q ∈ M the data structure outputs a point ŝ′ ∈ S′. We then output
ŝ = π−1(ŝ′). Then overall for every point s′ ∈ S′ it holds that dM(q, ŝ′) ≤ (1 + ε)dM(q, s′).
Then for any s′ ∈ S′ it holds that

dM(q, ŝ) ≤ dM(q, ŝ′) + dM(ŝ, ŝ′) ≤ (1 + ε)dM(q, s′) + max
s∈S

dM(s, πε(s))

And thus for any s ∈ S it holds that

dM(q, ŝ) ≤ (1 + ε)(dM(q, s) + dM(s, s′)) + max
s∈S

dM(s, πε(s))

≤ (1 + ε)dM(q, s) + (2 + ε)
(

max
s∈S

dM(s, πε(s))
)
,

implying the claim. J

I Theorem 42. LetM be a metric space that is tractably nearly-doubling. Let S ⊂M be a
set of n points. Then for every ε > 0 one can construct a data structure which for any given
q ∈M returns a point ŝ ∈ S such that for every s ∈ S it holds that

dM(q, ŝ) ≤ (1 + ε)dM(q, s).

The expected preprocessing time is given by
∑
s∈S ρM(s, e) + 2O(νM(e)) + ε−O(νM(e)) and the

space used is in 2O(νM(e))n logn. The query time is given by 2O(νM(e)) logn + ε−O(νM(e)),
where e = (ε/4) mins6=s′∈S dM(s, s′).

Proof. This proof follows the proof of Theorem 9. Just like before, it is a consequence from
Lemma 41, by selecting specific parameters.

First let ε′ = ε/4 and ε′′ = εmins6=s′∈S dM(s, s′). We then apply Lemma 41 with the
subspaceMε′′ , the set πε′′(S) ⊂Mε′′ ⊂M and the map πε′′ , where the doubling dimension
ofMε′′ is given by νM(ε′′), asM is tractably nearly-doubling. Thus dH(S, πε′′(S)) ≤ ε′′.
The expected preprocessing time is given by

∑
s∈S ρM(s, ε)+2O(νM(ε′′))+ε−O(νM(ε′′)) and the

space used is in 2O(νM(ε′′))n logn. The query time is given by 2O(νM(ε′′)) logn+ ε−O(νM(ε′′)).
Let q ∈ M be given. Let ŝ be the output of the data structure, and let s∗ be the

point in S minimizing the distance to q. We again start, by assuming (2 + ε′)dM(q, s∗) ≤
(1 + ε′) mins6=s′∈S dM(s, s′). But then for every s′ 6= s∗ we know that

dM ≥ dM(s∗, s′)− dM(q, s∗) ≥ min
s6=s′∈S

dM(s, s′)− dM(q, s∗)

> (1− ε′)( min
s 6=s′∈S

dM(s, s′)) + ε′( min
s6=s′∈S

)− dM(q, s∗)

= (1 + ε′)dM(q, s∗) + ε′( min
s 6=s′∈S

dM(s, s′))
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and thus ŝ = s∗, implying dM(q, ŝ) ≤ (1 + ε)dM(q, s∗).
Now assume (2 + ε′)dM(q, s∗) ≥ (1− ε′) mins6=s′∈S dM(s, s′). Then we know that

dM(q, ŝ) ≤ (1 + ε′)dM(q, s∗) + ε′
(

min
s6=s′∈S

dM(s, s′)
)

≤ (1 + ε′)dM(q, s∗) + ε′
(

2 + ε′

1− ε′

)
dM(q, s∗).

Now since ε ≤ 1, we know that ε′ ≤ 1/4 and thus 2+ε′
1−ε′ ≤ 3. This then concludes the proof,

as

dM(q, ŝ) ≤ (1 + ε′)dM(q, s∗) + ε′
(

2 + ε′

1− ε′

)
dM(q, s∗)

≤ (1 + 4ε′)dM(q, s∗) = (1 + ε)dM(q, s∗). J

7 Conclusion

In this work we established that despite the unbounded doubling dimension of the metric
space of the Fréchet distance of curves Xd,k, there are spaces which are arbitrarily close to
Xd,k which all have bounded doubling dimension, depending on the distance to Xd,k. We
then constructed an approximate nearest neighbour data structure for Xd,k by answering
approximate nearest neighbour queries in these arbitrarily close spaces via well-established
data structures which can be constructed in spaces of bounded doubling dimension. As a
special case we considered the setting of c-packed curves to which our approach extends,
resulting in an improved running time in this special setting.

We further gave a constructive argument as to why the doubling dimension of the space
of (µ, ε)-curves in Xd,kΛ is large. The gap between the upper bound on the doubling dimension
and the construction is quite small — especially in the case of c-packed curves for constant c
— but any further improvements to this gap would be interesting to see. We do not believe
that either of the given bounds are necessarily tight.

Intuitively, it seems reasonable to assume that the ’dimension’ of the problem should be
at least kd for d ∈ O(lognm) and k = m. It is well-known [23] that the L∞-metric in Rd
embeds isometrically into a Fréchet metric space of one-dimensional curves of complexity
k = 3d. Recently, Rohde and Psarros showed that random projections can be used to obtain
dimensionality reductions for the Fréchet metric [32] when d ∈ Ω(log(nm)).

An important future research direction is the reduction of the dependence on the bundled-
ness (or spread of the underlying set of vertices and edges) in the running time. In our case
the dependence on the spread is a result of turning the additive error of the Gromov-Hausdorff
distance between Xd,k and the space of (µ, ε)-curves into a multiplicative error. With our
approach this seems to be inevitable.

It would further be interesting to see what other results from spaces of bounded doubling
dimension can be extended to spaces (not restricted to that of polygonal curves) of unbounded
doubling dimension in this way.
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