
Maintaining Triconnected Components under Node
Expansion
Simon D. Fink #

Faculty of Informatics and Mathematics, University of Passau, Germany
Algorithms and Complexity Group, Technische Universität Wien, Austria

Ignaz Rutter #

Faculty of Informatics and Mathematics, University of Passau, Germany

Abstract
SPQR-trees model the decomposition of a biconnected graph into triconnected components. In this
paper, we study the problem of dynamically maintaining an SPQR-tree while expanding vertices
into arbitrary biconnected graphs. This allows us to efficiently merge two SPQR-trees by identifying
the edges incident to two vertices with each other. We do this working along an axiomatic definition
lifting the SPQR-tree to a stand-alone data structure that can be modified independently from the
graph it might have been derived from. Making changes to this structure, we can now observe how
the graph represented by the SPQR-tree changes, instead of having to reason which updates to the
SPQR-tree are necessary after a change to the represented graph.

Using efficient expansions and merges allows us to improve the runtime of the Synchronized
Planarity algorithm by Bläsius et al. [4] from O(m2) to O(m · ∆), where ∆ is the maximum degree
of a vertex with a synchronization constraint that requires two vertices to have the same rotation
under a given bijection. This also reduces the time for solving several related constrained planarity
problems, e.g. for Clustered Planarity from O((n + d)2) to O(n + d · ∆), where d is the total
number of crossings between cluster borders and edges and ∆ is the maximum number of edge
crossings on a single cluster border.1

Keywords and phrases SPQR-Tree, Dynamic Algorithm, Clustered Planarity

Digital Object Identifier 10.57717/cgt.v3i2.44

Related Version A preliminary version of this paper has appeared at CIAC’23 [9]. This journal
version provides full proofs for all statements together with the detailed changes made to the algorithm.
It also contains additional figures together with an overview over the runtime improvements for
various other constrained planarity variants.

Funding Funded by DFG-grant RU-1903/3-1.

1 Introduction

The SPQR-tree is a data structure that represents the decomposition of a graph at its
separation pairs, that is the pairs of vertices whose removal disconnects the graph. The
components obtained by this decomposition are called skeletons. SPQR-trees form a central
component of many graph visualization techniques and are used for, e.g., planarity testing
and variations thereof [7, 14] and for computing embeddings and layouts [12,19]. Initially,
SPQR-trees were devised by Di Battista and Tamassia for incremental planarity testing [7].
Their use was quickly expanded to other on-line problems [6] and to the fully-dynamic setting,
that is allowing insertion and deletion of vertices and edges in O(

√
n) time [8], where n is

the number of vertices in the graph.

1 There is a linear reduction from Clustered to Synchronized Planarity that converts edges crossing
cluster boundaries to edges incident to synchronized vertices. Thereby, for an instance of the former
problem, both definitions of ∆ yield the same value.

© Simon D. Fink and Ignaz Rutter
licensed under Creative Commons License CC-BY 4.0

Computing in Geometry and Topology: Volume 3(2); Article 7; pp. 7:1–7:20

mailto:sfink@ac.tuwien.ac.at
https://orcid.org/0000-0002-2754-1195
mailto:rutter@fim.uni-passau.de
https://orcid.org/0000-0002-3794-4406
https://doi.org/10.57717/cgt.v3i2.44
https://creativecommons.org/licenses/by/4.0/
https://www.cgt-journal.org/

7:2 Maintaining Triconnected Components under Node Expansion

In this paper, we consider an incremental setting where we allow a single operation that
expands a vertex v into an arbitrary biconnected graph Gν . The approach of Eppstein et
al. [8] allows this in O((deg(v) + |Gν |) ·

√
n) time by only representing parts of triconnected

components.2 We improve this to O(deg(v) + |Gν |) using an algorithm that is much simpler
and explicitly yields full triconnected components, which will become important for our
applications later. In addition, our approach also allows to efficiently merge two SPQR-trees
as follows. Given two biconnected graphs G1, G2 containing vertices v1, v2, respectively,
together with a bijection between their incident edges, we construct a new graph G by
replacing v1 with G2 − v2 in G1, identifying edges using the given bijection. Given the
SPQR-trees of G1 and G2, we show that the SPQR-tree of G can be found in O(deg(v1))
time. More specifically, we present a data structure that supports the following operations:
InsertGraphSPQR expands a single vertex in time linear in the size of the expanded subgraph,
MergeSPQR merges two SPQR-trees in time linear in the degree of the replaced vertices,
IsPlanar indicates whether the currently represented graph is planar in constant time, and
Rotation yields one of the two possible planar rotations (cyclic orders of incident edges) of
a vertex in a triconnected skeleton in constant time. Furthermore, our data structure can be
adapted to yield consistent planar embeddings for all triconnected skeletons and to test for
the existence of three distinct paths between two arbitrary vertices with an additional factor
of α(n) for all operations, where α is the inverse Ackermann function.

The main idea of our approach is that the subtree of the SPQR-tree affected by expanding
a vertex v has size linear in the degree of v, but may contain arbitrarily large skeletons. In a
“non-normalized” version of an SPQR-tree, the affected cycle (‘S’) skeletons can easily be
split to have a constant size, while we develop a custom splitting operation to limit the size
of triconnected (‘R’) skeletons. This limits the size of the affected structure to be linear in
the degree of v and allows us to perform the expansion efficiently.

In addition to the description of this data structure, the technical contribution of this
paper is twofold: First, we develop an axiomatic definition of the decomposition at separation
pairs, putting the SPQR-tree as “mechanical” data structure into focus instead of relying on
and working along a given graph structure. As a result, we can deduce the represented graph
from the data structure instead of computing the data structure from the graph. This allows
us to make more or less arbitrary changes to the data structure (respecting its consistency
criteria) and observe how the graph changes, instead of having to reason which changes to
the graph require which updates to the data structure.

Second, we explain how our data structure can be used to improve the runtime of the
algorithm by Bläsius et al. [4] for solving the Synchronized Planarity problem from
O(m2) to O(m · ∆), where ∆ is the maximum pipe degree. Synchronization constraints in
the form of pipes are a core component of this problem: we seek a planar embedding of a
graph such that for each pipe matching up two distinct vertices, their rotation lines up under
a given bijection. Synchronized Planarity can be used to model and solve a vast class of
different kinds of constrained planarity; see Table 1 for an overview of problems benefiting
from our speedup. Among them is the notorious Clustered Planarity, whose complexity
was open for 30 years before Fulek and Tóth gave an algorithm with runtime O((n + d)8)
in 2019 [11], where d is the total number of crossings between cluster borders and edges.
Shortly thereafter, Bläsius et al. [4] gave a solution in O((n + d)2) time. We improve this
to O(n + d · ∆), where ∆ is the maximum number of edge crossings on a single cluster border.

2 Unfortunately, the recent improvements by Holm and Rotenberg are not applicable here, as they maintain
triconnectivity in an only incremental setting [15], while maintaining only planarity information in the
fully-dynamic setting [14].

S. D. Fink and I. Rutter 7:3

Problem
Running Times

before [4] using [4] with this paper

Atomic Embeddability /
Synchronized Planarity

O(m8) [11] O(m2) O(m · ∆)

Clustered Planarity O((n + d)8) [11] O((n + d)2) O(n + d · ∆)

Connected SEFE O(n16) [11] O(n2) O(n · ∆)
bicon: O(n2) [3]

Partially PQ-constrained
Planarity

bicon: O(m) [3] O(m2) O(m · ∆)

Row-Column Independent
NodeTrix Planarity

bicon: O(n2) [17] O(n2) O(n · ∆)

Strip Planarity O(n8) [2, 11] O(n2) O(n · ∆)
fixed emb: O(n2) [2]

Table 1 The best known running times for various constrained planarity problems before Syn-
chronized Planarity [4] was published; using it as described in [4]; and using it together with
the speed-up from this paper. Running times prefixed with “bicon” only apply for certain problem
instances which expose some form of biconnectivity. The variables n and m refer to the number
of vertices and edges of the problem instance, respectively. The variable d refers to the number of
edge-cluster boundary crossings in Clustered Planarity instances, while ∆ refers to the maximum
pipe degree in the corresponding Synchronized Planarity instances. This is bounded by the
maximum number of edges crossing a single cluster border or the maximum vertex degree in the
input instance, depending on the problem.

This work is structured as follows. After preliminaries in Section 2, we describe the
skeleton decomposition and show how it relates to the SPQR-tree in Section 3. Section 4
extends this data structure by the capability of splitting triconnected components. In
Section 5, we use this to ensure the affected part of the SPQR-tree is small when we replace
a vertex with a new graph. Section 6 shows how our results can be used to reduce the
time required for solving Synchronized Planarity, Clustered Planarity and related
constrained planarity variants.

2 Preliminaries

In the context of this work, G = (V, E) is a (usually biconnected and loop-free) multi-graph
with n vertices V and m (possibly parallel) edges E. For a vertex v, we denote its open
neighborhood (excluding v itself) by N(v). For a bijection or matching ϕ we call ϕ(x) the
partner of an element x. We use A ·∪ B to denote the union of two disjoint sets A, B.

A separating k-set is a set of k vertices whose removal increases the number of connected
components. Separating 1-sets are called cutvertices, while separating 2-sets are called
separation pairs. A connected graph is biconnected if it does not have a cutvertex. A
biconnected graph is triconnected if it does not have a separation pair. Maximal biconnected
subgraphs are called blocks. Each separation pair divides the graph into bridges, the
maximal subgraphs which cannot be disconnected by removing or splitting the vertices of
the separation pair. A bond is a graph that consists solely of two pole vertices connected by

CGT

7:4 Maintaining Triconnected Components under Node Expansion

multiple parallel edges, a polygon is a simple cycle, while a rigid is any simple triconnected
graph. A wheel is a cycle with an additional central vertex connected to all other vertices.

Finally, the expansion that is central to this work is formally defined as follows. Let
Gα, Gβ be two graphs where Gα contains a vertex u and Gβ contains |N(u)| marked vertices,
together with a bijection ϕ between the neighbors of u and the marked vertices in Gβ . With
Gα[u →ϕ Gβ] we denote the graph that is obtained from the disjoint union of Gα, Gβ by
identifying each neighbor x of u with its respective marked vertex ϕ(x) in Gβ and removing u,
i.e. the graph Gα where the vertex u was expanded into Gβ ; see Figure 4 for an example.

3 Skeleton decompositions

Classically, SPQR-trees are defined as a tree derived from the decomposition of a given graph
at separation pairs. Each node of the SPQR-tree is associated with a skeleton graph that
represents a subgraph of the original graph that cannot be decomposed further. For our
purposes, we invert this approach and define a skeleton structure that starts from arbitrary
skeleton graphs equipped with explicit mappings and conditions that ensure that, together,
they define a graph. The SPQR-tree for a given graph G is then simply the skeleton structure
that happens to define G. This has significant advantages in a dynamic context. Instead of
tracking how changes in G affect its decomposition and thus require updates to its SPQR-tree,
we can directly apply modifications to the skeletons that preserve all mappings and conditions.
It then suffices to check that the resulting skeletons define the desired modification of G.

A skeleton structure S = (G, origV, origE, twinE) that represents a graph GS = (V, E)
consists of a set G of disjoint skeleton graphs together with three total, surjective mappings
twinE, origE, and origV that satisfy the following conditions:

Each skeleton Gµ = (Vµ, Ereal
µ ·∪ Evirt

µ) in G is a multi-graph where each edge is either in
Ereal

µ and thus called real or in Evirt
µ and thus called virtual.

Bijection twinE : Evirt → Evirt matches all virtual edges Evirt =
⋃

µ Evirt
µ such that

twinE(e) ̸= e and twinE2 = id.
Surjection origV :

⋃
µ Vµ → V maps all skeleton vertices to graph vertices.

Bijection origE :
⋃

µ Ereal
µ → E maps all real edges to the graph edge set E.

Note that each vertex and each edge of each skeleton is in the domain of exactly one of
the three mappings. As the mappings are surjective, V and E are exactly the images of origV
and origE. For each vertex v ∈ GS , the skeletons that contain a vertex v′ with origV(v′) = v

are called the allocation skeletons of v. We call v′ an allocation vertex of v. Furthermore,
let TS be a graph such that each node µ of TS corresponds to a skeleton Gµ of G and two
nodes of TS are adjacent if their skeletons contain a pair of virtual edges matched with
each other by twinE. We call a skeleton structure a skeleton decomposition if it satisfies the
following conditions:
1 (bicon) Each skeleton is biconnected.
2 (tree) Graph TS is simple, loop-free, connected and acyclic, i.e., a tree.
3 (orig-inj) For each skeleton Gµ, the restriction origV |Vµ

is injective.
4 (orig-real) For each real edge uv, the endpoints of origE(uv) are origV(u) and origV(v).
5 (orig-virt) Let uv and u′v′ be two virtual edges with uv = twinE(u′v′). For their respective

skeletons Gµ and G′
µ (where µ and µ′ are adjacent in TS), it is origV(Vµ) ∩ origV(Vµ′) =

origV({u, v}) = origV({u′, v′}).
6 (subgraph) The allocation skeletons of any vertex of GS form a connected subgraph of TS .

S. D. Fink and I. Rutter 7:5

u
(a)

(b)

(d)

(c)

Figure 1 Different views on the skeleton decomposition S. (a) The graph GS with a vertex u

marked in blue. (b) The skeletons of G. Virtual edges are drawn in gray with their matching twinE
being shown in orange. The allocation vertices of u are marked in blue. (c) The tree TS . The
allocation skeletons of u are marked in blue. (d) The embedding tree of vertex u as described in
Section 6.1. P-nodes are shown as white disks, Q-nodes are shown as large rectangles. The leaves of
the embedding tree correspond to the edges incident to u.

split(,)

join(e1, e2) e1

(a) (b)
e2

Figure 2 (a) A skeleton decomposition that represents graph GS from Figure 1a with the two
allocation vertices of graph vertex u marked in blue. (b) The result of applying SplitSeparation-
Pair to separate the bridges highlighted in green from those in red. Applying the converse operation
JoinSeparationPair on the resulting edges yields the original skeleton.

Figure 1 shows an example of S, GS , and TS . We call a skeleton decomposition with
only one skeleton Gµ trivial. In this case, Gµ is isomorphic to GS , and origE and origV are
actually bijections between the edges and vertices of both graphs.

To model the decomposition into triconnected components, we define the operations
SplitSeparationPair and its converse, JoinSeparationPair, on a skeleton decomposition
S = (G, origV, origE, twinE); see also Figure 2. For SplitSeparationPair, let u, v be a
separation pair of skeleton Gµ and let (A, B) be a non-trivial bipartition of the bridges
between u and v in Gµ.3 Applying SplitSeparationPair(S, (u, v), (A, B)) yields skeleton
decomposition S ′ = (G′, origV′, origE′, twinE′) as follows. In G′, we replace Gµ by two
skeletons Gα, Gβ , where Gα is obtained from Gµ[A] by adding a new virtual edge eα between u

and v. The same respectively applies to Gβ with Gµ[B] and eβ . We set twinE′(eα) = eβ and
twinE′(eβ) = eα. Note that origV maps the endpoints of eα and eβ to the same vertices. All
other skeletons and their mappings remain unchanged.

For JoinSeparationPair, consider virtual edges eα, eβ with twinE(eα) = eβ and let
Gβ ̸= Gα be their respective skeletons. Applying JoinSeparationPair(S, eα) yields a
skeleton decomposition S ′ = (G′, origV′, origE′, twinE′) as follows. In G′, we merge Gα

with Gβ to form a new skeleton Gµ by identifying the endpoints of eα and eβ that map to
the same vertex of GS . Additionally, we remove eα and eβ . All other skeletons and their
mappings remain unchanged.

3 Note that a bridge may consist of a single edge between u and v and that each bridge includes the
vertices u and v.

CGT

7:6 Maintaining Triconnected Components under Node Expansion

The main feature of both operations is that they leave the graph represented by the
skeleton decomposition unaffected while splitting a node or contracting an edge in TS , which
can be verified by checking the individual conditions.

▶ Lemma 1. Applying SplitSeparationPair or JoinSeparationPair on a skeleton de-
composition S yields a skeleton decomposition S ′ with an unchanged represented graph
GS′ = GS .

Proof. We first check that all conditions still hold in the skeleton decomposition S ′ returned
by SplitSeparationPair. As (A, B) is a non-trivial bipartition, each set contains at least
one bridge. Together with eα (and eβ), this bridge ensures that Gα (and Gβ) remain
biconnected, satisfying condition 1 (bicon). The operation splits a node µ of TS into two
adjacent nodes α, β, whose neighbors are defined exactly by the virtual edges in A, B,
respectively. Thus, condition 2 (tree) remains satisfied. The mappings origV′, origE′ and
twinE′ obviously still satisfy conditions 3 (orig-inj) and 4 (orig-real). We duplicated exactly two
nodes, u and v of adjacent skeletons Gα and Gβ . Because 3 (orig-inj) holds for Gµ, Gα and Gβ

share no other vertices that map to the same vertex of GS′ . Thus, condition 5 (orig-virt)
remains satisfied.

Condition 6 (subgraph) could only be violated if the subgraph of TS′ formed by the
allocation skeletons of some vertex z ∈ GS′ was no longer connected. This could only happen
if only one of Gα and Gβ were an allocation skeleton of z, while the other has a further
neighbor that is also an allocation skeleton of z. Assume without loss of generality that Gα and
the neighbor Gν of Gβ , but not Gβ itself, were allocation skeletons of z. Because Gν and Gβ

are adjacent in TS′ there are virtual edges xy = twinE′(x′y′) with xy ∈ Gβ and x′y′ ∈ Gν .
The same virtual edges are also present in the input instance, only with the difference that
xy ∈ Gµ and µ (instead of β) and ν are adjacent in TS . As the input instance satisfies
condition 5 (orig-virt), it is z ∈ origV(Vν) ∩ origV(Vµ) = origV({x, y}) = origV({x′, y′}).
As origV({x, y}) = origV′({x, y}), this is a contradiction to Gβ not being an allocation
skeleton of z.

Finally, the mapping origE remains unchanged and the only change to origV is to include
two new vertices mapping to already existing vertices. Due to condition 4 (orig-real) holding
for both the input and the output instance, this cannot affect the represented graph GS′ .

Now consider the skeleton decomposition S ′ returned by JoinSeparationPair. Identify-
ing distinct vertices of distinct connected components does not affect their biconnectivity,
thus condition 1 (bicon) remains satisfied. The operation effectively contracts and removes
an edge in TS , which does not affect TS′ being a tree satisfying condition 2 (tree). Note
that condition 2 (tree) holding for the input instance also ensures that Gα and Gβ are two
distinct skeletons. As the input instance also satisfies condition 5 (orig-virt), there are exactly
two vertices in each of the two adjacent skeletons Gα and Gβ , where origV maps to the
same vertex of GS . These two vertices must be part of the twinE pair making the two
skeletons adjacent, thus they are exactly the two pairs of vertices we identify with each
other. Thus, origV |Vµ is still injective, satisfying condition 3 (orig-inj). As we modify no
real edges and no other virtual edges, the mappings origV′ and origE′ obviously still satisfy
condition 4 (orig-real). As the allocation skeletons of each graph vertex form a connected
subgraph, joining two skeletons cannot change the intersection with any of their neighbors,
leaving 5 (orig-virt) satisfied. Finally, contracting a tree edge cannot lead to any of the
subgraphs of 6 (subgraph) becoming disconnected, thus the condition also remains satisfied.
Again, no changes were made to origE, while condition 5 (orig-virt) makes sure that origV
mapped the two pairs of merged vertices to the same vertex of GS . Thus, the represented
graph GS′ remains unchanged. ◀

S. D. Fink and I. Rutter 7:7

This gives us a second way of finding the represented graph by exhaustively joining all
skeletons until there is only one left, obtaining the unique trivial skeleton decomposition:

▶ Lemma 2. Exhaustively applying JoinSeparationPair to a skeleton decomposition S =
(G, origV, origE, twinE) yields a trivial skeleton decomposition S ′ = (G′, origV′, origE′, twinE′)
where origE′ and origV′ define an isomorphism between G′

µ and GS′ .

Proof. As all virtual edges are matched, and the matched virtual edge always belongs to
a different skeleton (condition 2 (tree) ensures that TS is loop-free), we can always apply
JoinSeparationPair on a virtual edge until there are none left. As TS is connected, this
means that we always obtain a tree with a single node, that is, an instance with only a single
skeleton. As a single application of JoinSeparationPair preserves the represented graph,
any chain of multiple applications also does. Note that origE′ is a bijection and the surjective
origV′ is also injective on the single remaining skeleton due to condition 3 (orig-inj), thus
it also globally is a bijection. Together with condition 4 (orig-real), this ensures that any
two vertices u and v of G′

µ are adjacent if and only if origV′(u) and origV′(v) are adjacent
in GS′ . Thus origV′ is an edge-preserving bijection, that is an isomorphism. ◀

A key point about the skeleton decomposition and especially the operation SplitSep-
arationPair is that they model the decomposition of a graph at separation pairs. This
decomposition was formalized as SPQR-tree by Di Battista and Tamassia [6,7] and is unique
for a given graph [16,18]. Angelini et al. [1] describe a decomposition tree that is conceptually
equivalent to our skeleton decomposition. They also present an alternative definition for the
SPQR-tree as a decomposition tree satisfying further properties. We adopt this definition
as follows, not requiring planarity of triconnected components and allowing virtual edges
and real edges to appear within one skeleton (i.e., not including the so-called Q-nodes but
merging them into their parents instead).

▶ Definition 3. A skeleton decomposition S where any skeleton in G is either a polygon, a
bond, or triconnected (“rigid”), and two skeletons adjacent in TS are never both polygons or
both bonds, is the unique SPQR-tree of GS .

The main difference between the well-known ideas behind decomposition trees and our
skeleton decomposition is that the latter allow an axiomatic access to the decomposition at
separation pairs. For the skeleton decomposition, we employ a purely functional, “mechanical”
data structure instead of relying on and working along a given graph structure. In our case,
the represented graph is deduced from the data structure (i.e. from the SPQR-tree) instead
of computing the data structure from the graph.

4 Extended skeleton decompositions

To modify (i.e., replace with another graph) a vertex v in a graph G while maintaining
its SPQR-tree in the form of a skeleton decomposition, a naïve approach would be as
follows: First join all allocation skeletons of v to obtain a single skeleton Gµ that directly
represents the structure of the neighborhood of v, second perform the replacement on the
single allocation vertex of v in Gµ, third exhaustively decompose the resulting G′

µ to again
obtain an SPQR-tree. The problem of this approach is that Gµ can be arbitrarily large; its
size is the sum of the sizes of all allocation skeletons of v. Fortunately, polygons and bonds
that contain an allocation vertex of v can easily be decomposed along separation pairs into
smaller parts, such that their total size is linear in the degree of v.

CGT

7:8 Maintaining Triconnected Components under Node Expansion

v

Gµ

u

(a)

vvα

vβ

Gα

Gβ

uα uβ

(b)

Figure 3 (a) A triconnected skeleton Gµ with a highlighted vertex v incident to two gray virtual
edges. (b) The result of applying IsolateVertex to isolate v out of the skeleton. The red occupied
edges in the old skeleton Gα form a star with center vα, while the red occupied edges in Gβ connect
all neighbors of v to form a star with center vβ ≠ v. The centers vα and vβ are virtual and matched
with each other. Neighbor u of v was split into vertices uα and uβ . Conversely, applying Integrate
on (vα, vβ) in (b) again yields skeleton Gµ as in (a).

The exception to this are triconnected skeletons, which cannot be split further using the
operations we defined up to now. We thus define a further set of operations which allow us to
efficiently isolate an allocation vertex u of v out of an arbitrary triconnected component by
replacing it with a (“virtual”) placeholder vertex. This placeholder then points to a smaller
component that contains the actual allocation vertex u; see Figure 3. Modification of the
edges incident to the placeholder is disallowed, which is why we call them “occupied”. In the
end, applying these splits guarantees that the allocation skeletons of v have, in total, a size
linear in the degree of v.

Formally, the structures needed to keep track of the triconnected components split in this
way in an extended skeleton decomposition S = (G, origV, origE, twinE, twinV) are defined
as follows. Skeletons now have the form Gµ = (Vµ ·∪ V virt

µ , Ereal
µ ·∪ Evirt

µ ·∪ Eocc
µ). Bijection

twinV : V virt → V virt matches all virtual vertices V virt =
⋃

µ V virt
µ , such that twinV(v) ̸= v,

twinV2 = id. The edges incident to virtual vertices are contained in Eocc
µ and thus considered

occupied; see Figure 3b. Similar to the virtual edges matched by twinE, any two virtual
vertices matched by twinV induce an edge between their skeletons in TS . Condition 2 (tree)
also equally applies to those edges induced by twinV, which in particular ensures that there
are no parallel twinE and twinV tree edges in TS . Similarly, the connected subgraphs of
condition 6 (subgraph) can also contain tree edges induced by twinV. All other conditions
remain unchanged, but we add two further conditions to ensure that twinV is consistent:

7 (stars) For each vα, vβ with twinV(vα) = vβ , it is deg(vα) = deg(vβ). All edges incident
to vα and vβ are occupied and have distinct endpoints. Each occupied edge is adjacent
to exactly one virtual vertex.

8 (orig-stars) Let vα and vβ again be two virtual vertices matched with each other by twinV.
For their respective skeletons Gα and Gβ (where α and β are adjacent in TS), it is
origV(Vα) ∩ origV(Vβ) = origV(N(vα)) = origV(N(vβ)).

Both conditions together yield a bijection γvαvβ
between the neighbors of vα and vβ , as

origV is injective when restricted to a single skeleton (condition 3 (orig-inj)) and deg(vα) =
deg(vβ). Operations SplitSeparationPair and JoinSeparationPair can also be applied
to an extended skeleton decomposition, yielding an extended skeleton decomposition without
modifying twinV. To ensure that conditions 7 (stars) and 8 (orig-stars) remain unaffected by
both operations, SplitSeparationPair can only be applied to non-virtual vertices.

The operations IsolateVertex and Integrate now allow us to isolate vertices out of
triconnected components and integrate them back in, respectively. For IsolateVertex, let v

be a non-virtual vertex of skeleton Gµ, such that v has no incident occupied edges. Applying

S. D. Fink and I. Rutter 7:9

IsolateVertex(S, v) on an extended skeleton decomposition S yields an extended skeleton
decomposition S ′ = (G′, origV′, origE′, twinE′, twinV′) as follows. Each neighbor u of v is
split into two non-adjacent vertices uα and uβ , where uβ is incident to all edges connecting u

with v, while uα keeps all other edges of u. We set origV′(uα) = origV′(uβ) = origV(u). This
creates an independent, star-shaped component with center v, which we move to skeleton Gβ ,
while we rename skeleton Gµ to Gα. We connect all uα to a single new virtual vertex
vα ∈ V virt

α using occupied edges, and all uβ to a single new virtual vertex vβ ∈ V virt
β using

occupied edges; see Figure 3. Finally, we set twinV′(vα) = vβ , twinV′(vβ) = vα, and add Gβ

to G′. All other mappings and skeletons remain unchanged.
For the converse operation Integrate, consider two virtual vertices vα, vβ with twinV(vα) =

vβ and the bijection γvαvβ
between the neighbors of vα and vβ ; see Figure 3b. An application

of Integrate(S, (vα, vβ)) yields an extended skeleton decomposition S ′ = (G′, origV′, origE′,

twinE′, twinV′) as follows. We merge both skeletons into a skeleton Gµ (also replacing
both in G′) by identifying the neighbors of vα and vβ according to γvαvβ

. Furthermore, we
remove vα and vβ together with their incident occupied edges. All other mappings and
skeletons remain unchanged.

▶ Lemma 4. Applying IsolateVertex or Integrate on an extended skeleton decomposition
S = (G, origV, origE, twinE, twinV) yields an extended skeleton decomposition S ′ = (G′,

origV′, origE′, twinE′, twinV′) with GS′ = GS .

Proof. We first check that all conditions still hold in the extended skeleton decomposition S ′

returned by IsolateVertex. Condition 1 (bicon) remains satisfied, as the structure of Gα

remains unchanged compared to Gµ and the skeleton Gβ is a bond. As we are again splitting
a node of TS , condition 2 (tree) also remains satisfied. Due to the neighbors of vβ and vα

mapping to the same vertices of GS′ , conditions 3 (orig-inj), 4 (orig-real), and 5 (orig-virt)
remain satisfied. Conditions 7 (stars) and 8 (orig-stars) are satisfied by construction.

Lastly, condition 6 (subgraph) could only be violated if the subgraph of TS′ formed by the
allocation skeletons of some vertex z ∈ GS′ was no longer connected. This could only happen
if only one of Gα and Gβ were an allocation skeleton of z, while the other has a further
neighbor Gν that is also an allocation skeleton of z. Note that in any case, ν is adjacent
to µ in TS and µ must be an allocation skeleton of z, thus it is z ∈ origV(Gν) ∩ origV(Gµ).
Depending on the adjacency of ν, it is either origV(Gν)∩origV(Gµ) = origV′(Gν)∩origV(Gα)
or origV(Gν) ∩ origV(Gµ) = origV′(Gν) ∩ origV(Gβ), as ν is not modified by the operation
and both S and S ′ satisfy 5 (orig-virt) and 8 (orig-stars). This immediately contradicts the
skeleton of {α, β}, that is adjacent to ν, not being an allocation skeleton of z.

Finally, the mapping origE remains unchanged and the only change to origV is to include
some duplicated vertices mapping to already existing vertices. As condition 4 (orig-real) holds
for both the input and the output instance, this cannot affect the represented graph GS′ .

Now consider the extended skeleton decomposition S ′ returned by Integrate. The
merged skeleton is biconnected, as we are effectively replacing a single vertex by a connected
subgraph, satisfying 1 (bicon). The operation effectively contracts and removes an edge
in TS , which does not affect TS′ being a tree, satisfying condition 2 (tree). Note that
condition 2 (tree) holding for the input instance also ensures that vα and vβ belong to
two distinct skeletons. As the input instance satisfies condition 5 (orig-virt), the vertices
in each of the two adjacent skeletons where origV maps to the same vertex of GS are
exactly the neighbors of the matched vα and vβ . Thus, origV |Vα

is still injective, satisfying
condition 3 (orig-inj). As we modify no real or virtual edges, the mappings origV′, origE′ and
twinE′ obviously still satisfy conditions 4 (orig-real) and 5 (orig-virt). Finally, contracting
a tree edge cannot lead to any of the subgraphs of 6 (subgraph) becoming disconnected,

CGT

7:10 Maintaining Triconnected Components under Node Expansion

v

Gµ

(a)

Gν

(b) (c)

Figure 4 Expanding a skeleton vertex v into a graph Gν in the SPQR-tree of Figure 5b. (a) The
single allocation skeleton Gµ of u with the single allocation vertex v of u from Figure 5b. The
neighbors of v are marked in orange. (b) The inserted graph Gν with orange marked vertices.
Note that the graph is biconnected when all marked vertices are collapsed into a single vertex.
(c) The result of applying InsertGraph(S, u, Gν , ϕ) followed by an application of Integrate on the
generated virtual vertices v and v′.

thus the condition also remains satisfied. Conditions 7 (stars) and 8 (orig-stars) also remain
unaffected, as we simply remove an entry from twinV.

Again, no changes were made to origE, while condition 8 (orig-stars) makes sure that
origV mapped each pair of merged vertices to the same vertex of GS . Thus, the represented
graph GS′ remains unchanged. ◀

Furthermore, as Integrate is the converse of IsolateVertex and has no preconditions,
any changes made by IsolateVertex can be undone at any time to obtain a (non-extended)
skeleton decomposition, and thus, possibly, the SPQR-tree of the represented graph.

▶ Remark 5. Exhaustively applying Integrate to an extended skeleton decomposition
S = (G, origV, origE, twinE, twinV) yields a extended skeleton decomposition S ′ = (G′,

origV′, origE′, twinE′, twinV′) where twinV′ = ∅. Thus, S ′ is equivalent to a (non-extended)
skeleton decomposition S ′ = (G′, origV′, origE′, twinE′).

5 Node expansion in extended skeleton decompositions

We now introduce the dynamic operation that changes the represented graph by expanding
a single vertex u into an arbitrary connected graph Gν . This is done by identifying |N(u)|
marked vertices in Gν with the neighbors of u via a bijection ϕ and then removing u and
its incident edges. We use the “occupied stars” from the previous section to model the
identification of these vertices, allowing us to defer the actual insertion to an application of
Integrate. We need to ensure that the inserted graph makes the same “guarantees” to the
surrounding graph in terms of connectivity as the vertex it replaces, that is all neighbors
of u (i.e. all marked vertices in Gν) need to be pairwise connected via paths in Gν not
using any other neighbor of u (i.e. any other marked vertex). Without this requirement,
a single vertex could e.g. also be split into two non-adjacent halves, which could break a
triconnected component apart. Thus, we require Gν to be biconnected when all marked
vertices are collapsed into a single vertex. Note that this also ensures that the old graph
can be restored by contracting the vertices of the inserted graph. For the sake of simplicity,
we require vertex u from the represented graph to have a single allocation vertex v ∈ Gµ

with origV−1(u) = {v} so that we only need to change a single allocation skeleton Gµ in the
skeleton decomposition. As we will make clear later on, this condition can be satisfied easily.

Formally, let u ∈ GS be a vertex that only has a single allocation vertex v ∈ Gµ (and thus
only a single allocation skeleton Gµ). Let Gν be an arbitrary, new graph containing |N(u)|
marked vertices, together with a bijection ϕ between the marked vertices in Gν and the

S. D. Fink and I. Rutter 7:11

neighbors of v in Gµ. We require Gν to be biconnected when all marked vertices are
collapsed into a single vertex, that is, when all marked vertices are indentified with each other.
Operation InsertGraph(S, u, Gν , ϕ) yields an extended skeleton decomposition S ′ = (G′,

origV′, origE′, twinE′, twinV′) as follows, see also Figure 4. We interpret Gν as skeleton
and add it to G′. For each marked vertex x in Gν , we set origV′(x) = origV(ϕ(x)). For
all other vertices and edges in Gν , we set origV′ and origE′ to point to new vertices and
edges forming a copy of Gν in GS′ . We connect every marked vertex in Gν to a new virtual
vertex v′ ∈ Gν using occupied edges. We also convert v to a virtual vertex, converting its
incident edges to occupied edges while removing parallel edges. Finally, we set twinV′(v) = v′

and twinV′(v′) = v.

▶ Lemma 6. Applying InsertGraph(S, u, Gν , ϕ) on an extended skeleton decomposition S
yields an extended skeleton decomposition S ′ with GS′ isomorphic to GS [u →ϕ Gν].

Proof. Condition 1 (bicon) remains satisfied, as the structure of Gµ remains unchanged
and the resulting Gν is biconnected by precondition. Regarding TS , we are attaching a
degree-1 node ν to an existing node µ, thus condition 2 (tree) also remains satisfied. As all
vertices of Gν except for the vertices in N(v′) got their new, unique copy assigned by origV′

and origV′(N(v′)) = origV(N(v)), condition 3 (orig-inj) is also satisfied for the new Gν .
As we updated origE alongside origV and Gν contains no virtual edges, conditions 4 (orig-
real) and 5 (orig-virt) remain satisfied. As ν is a leaf of TS with µ being its only neighbor,
origV′(N(v′)) ⊂ origV(Vµ), and Gν is the only allocation skeleton for all vertices in Gν \N(v′),
condition 6 (subgraph) remains satisfied. Conditions 7 (stars) and 8 (orig-stars) are satisfied
by construction. Finally, the mappings origE′ and origV′ are by construction updated to
correctly reproduce the structure of Gν in GS′ . ◀

On its own, this operation is not of much use though, as graph vertices only rarely have
a single allocation skeleton. Furthermore, our goal is to dynamically maintain SPQR-trees,
while this operation on its own will in most cases not yield an SPQR-tree. To fix this, we
introduce the full procedure InsertGraphSPQR(S, u, Gν , ϕ) that can be applied to any graph
vertex u and that, given an SPQR-tree S, yields the SPQR-tree of GS [u →ϕ Gν]. It consists
of three preparations steps, the insertion of Gν , and two further clean-up steps:
1. We apply SplitSeparationPair to each polygon allocation skeleton of u with more than

three vertices, using the neighbors of the allocation vertex of u as separation pair.
2. For each rigid allocation skeleton of u, we move the contained allocation vertex v of u to

its own skeleton by applying IsolateVertex(S, v).
3. We exhaustively apply JoinSeparationPair to any pair of allocation skeletons of u that

are adjacent in TS . Due to condition 6 (subgraph), this yields a single component Gµ that
is the sole allocation skeleton of u with the single allocation vertex v of u. Furthermore,
the size of Gµ is linear in deg(u).

4. We apply InsertGraph to insert Gν as skeleton, followed by an application of Integrate
to the virtual vertices {v, v′} introduced by the insertion, thus integrating Gν into Gµ.

5. We apply SplitSeparationPair to all separation pairs in Gµ that do not involve a
virtual vertex. These pairs can be found in linear time, e.g. by temporarily duplicating
all virtual vertices and their incident edges and then computing the SPQR-tree.4

6. Finally, we exhaustively apply Integrate and also apply JoinSeparationPair to any
two adjacent polygons and to any two adjacent bonds to obtain the SPQR-tree of the
updated graph.

4 The wheels replacing virtual vertices in the proof of Theorem 10 also ensure this.

CGT

7:12 Maintaining Triconnected Components under Node Expansion

(a)

v

(b)

Figure 5 The preprocessing steps of InsertGraphSPQR being applied to the SPQR-tree of Figure 1b.
(a) The state after Step 2, after all allocation skeletons of u have been split. (b) The state after
Step 3, after all allocation skeletons of u have been merged into a single one.

The basic idea behind the correctness of this procedure is that splitting the newly inserted
component according to its SPQR-tree in Step 5 yields biconnected components that are each
either a polygon, a bond, or “almost” triconnected. The latter (and only those) might still
contain virtual vertices and all their remaining separation pairs, which were not split in Step 5,
contain one of these virtual vertices. This, together with the fact that there still may be
pairs of adjacent skeletons where both are polygons or both are bonds, prevents the instance
from being an SPQR-tree. Both issues are resolved in Step 6: The adjacent skeletons are
obviously fixed by the JoinSeparationPair applications. To show that the virtual vertices
are removed by the Integrate applications, making the remaining components triconnected,
we need the following lemma.

▶ Lemma 7. Let Gα be a triconnected skeleton containing a virtual vertex vα matched with
a virtual vertex vβ of a biconnected skeleton Gβ. Furthermore, let P ⊆

(
V (Gβ)

2
)

be the set
of all separation pairs in Gβ. An application of Integrate(S, (vα, vβ)) yields a biconnected
skeleton Gµ with separation pairs P ′ = {{u, v} ∈ P | vβ /∈ {u, v}}.

Proof. We partition the vertices of Gµ into sets A, B, and N depending on whether the
vertex stems from Gα, Gβ , or both, respectively. The set N thus contains the neighbors
of vα, which were identified with the neighbors of vβ . We will show by contradiction that Gµ

contains no separation pairs except for those in P ′. Thus, consider a separation pair u, v ∈ Gµ

not in P ′. First, consider the case where u, v ∈ A∪N . Observe that removing u, v in this case
leaves B connected. Thus, we can contract all vertices of B into a single vertex, reobtain Gα

and see that u, v is a separation pair in Gα. This contradicts the precondition that Gα is
triconnected. Now consider the case where u, v ∈ B ∪ N . Analogously to above, we find
that u, v is a separation pair in Gβ that does not contain vβ , a contradiction to {u, v} /∈ P ′.
Finally, consider the remaining case where, without loss of generality, u ∈ A, v ∈ B. Since
{u, v} is a separation pair, u has two neighbors x, y that lie in different connected components
of Gµ − {u, v} and therefore also in different components of (Gµ − {u, v}) − B which is
isomorphic to Gα − {u, vα}. This again contradicts Gα being triconnected. ◀

▶ Theorem 8. Applying InsertGraphSPQR(S, u, Gν , ϕ) to an SPQR-tree S yields an SPQR-
tree S ′ in O(|Gν |) time with GS′ isomorphic to GS [u →ϕ Gν].

Proof. As all applied operations leave the extended skeleton decomposition valid, the final
extended skeleton decomposition S ′ is also valid. Observe that the purpose of the prepro-
cessing Steps 1–3 is to ensure that the precondition of InsertGraph is satisfied (that there
is only a single allocation vertex) and the affected component is not too large, that is, it has

S. D. Fink and I. Rutter 7:13

size linear in deg(u). This ensures that all further steps only need to consider skeletons that
have, in total, a size linear in deg(u) plus the size of the inserted graph Gν . Note that all
rigids split in Step 2 remain structurally unmodified in the sense that edges only changed
their type, but the graph and especially its triconnectedness remains unchanged. Step 4
performs the actual insertion and yields the desired represented graph according to Lemma 6.
For correctness, it thus remains to show that the clean-up Steps 5 and 6 turn the obtained
extended skeleton decomposition into an SPQR-tree. Afterwards, we show that the operation
can be executed in the claimed linear running time.

Applying Integrate exhaustively in Step 6 ensures that the extended skeleton decompo-
sition is equivalent to a non-extended one (Remark 5). Recall that a non-extended skeleton
decomposition is an SPQR-tree if all skeletons are either polygons, bonds or triconnected and
two adjacent skeletons are never both polygons or both bonds (Definition 3). Step 6 ensures
that the second half holds, as joining two polygons (or two bonds) with JoinSeparationPair
yields a bigger polygon (or bond, respectively). Before Step 6, all skeletons that are not
an allocation skeleton of u are still unmodified and thus already have a suitable structure,
i.e., they are either polygons, bonds or triconnected. Furthermore, the allocation skeletons
of u not containing virtual vertices also have a suitable structure, as their splits were made
according to the SPQR-tree in Step 5.

It remains to show that the remaining skeletons, that is those resulting from the Integrate
applications in Step 6, are triconnected. Note that in these skeletons, Step 5 ensures that
every separation pair consists of at least one virtual vertex, as otherwise the computed
SPQR-tree would have split the skeleton further. Further note that, for each of these virtual
vertices, the matched partner vertex is part of a structurally unmodified triconnected skeleton
that was split in Step 2. Lemma 7 shows that applying Integrate does not introduce new
separation pairs while removing two virtual vertices if one of the two sides is triconnected.
We can thus exhaustively apply Integrate and thereby remove all virtual vertices and thus
also all separation pairs, obtaining triconnected components. This shows that the criteria for
being an SPQR-tree are satisfied and, as InsertGraph expanded u to Gν in the represented
graph, we now have the unique SPQR-tree of GS [u →ϕ Gν].

Runtime. All operations we used can be performed in time linear in the degree of the
vertices they are applied on. For the bipartition of bridges input to SplitSeparationPair,
it is sufficient to describe each bridge via its edges incident to the separation pair instead
of explicitly enumerating all vertices in the bridge. Thus, the applications of SplitSepa-
rationPair and IsolateVertex in Steps 1 and 2 touch every edge incident to u at most
once and thus take O(deg(u)) time. Furthermore, they yield skeletons that have a size linear
in the degree of their respective allocation vertex of u. As the subtree of u’s allocation
skeletons has size at most deg(u), the JoinSeparationPair applications of Step 3 also take
at most O(deg(u)) time. It follows that the resulting single allocation skeleton of u has
size O(deg(u)).

The applications of InsertGraph and Integrate in Step 4 take time linear in the number
of identified neighbors, which is O(deg(u)). Generating the SPQR-tree of the inserted graph
in Step 5 (where all virtual vertices were replaced by wheels) can be done in time linear
in the size of the inserted graph [13,16], that is O(|Gν |). Applying SplitSeparationPair
according to all separation pairs identified by this SPQR-tree can also be done in O(|Gν |)
time in total.

Note that there are at most deg(u) edges between the skeletons that existed before Step 4
and those that were created or modified in Steps 4 and 5, and these are the only edges that

CGT

7:14 Maintaining Triconnected Components under Node Expansion

might now connect two polygons or two bonds. Thus, the applications of Integrate and
JoinSeparationPair in Step 6 run in O(deg(u)) time in total. Furthermore, they remove
all pairs of adjacent polygons and all pairs of adjacent bonds. This shows that all steps take
O(deg(u)) time, except for Step 5, which takes O(|Gν |) time. As the inserted graph contains
at least one vertex for each neighbor of u, the total runtime is in O(|Gν |). ◀

▶ Corollary 9. Let S1, S2 be two SPQR-trees together with vertices u1 ∈ GS1 , u2 ∈ GS2 , and
let ϕ be a bijection between the edges incident to u1 and the edges incident to u2. Operation
MergeSPQR(S1, S2, u1, u2, ϕ) yields the SPQR-tree of the graph GS1 [u1 →ϕ GS2 − u2], i.e. the
union of both graphs where the edges incident to u1, u2 were identified according to ϕ and
u1, u2 removed, in time O(deg(u1)) = O(deg(u2)).

Proof. Operation MergeSPQR works similar to the more general InsertGraphSPQR, although
the running time is better because we already know the SPQR-tree for the graph being
inserted. We apply Steps 1–3 to ensure that both u1 and u2 have sole allocation vertices v1
and v2, respectively. To properly handle parallel edges, we subdivide all edges incident
to u1, u2 (and thus also the corresponding real edges incident to v1, v2) and then identify
the subdivision vertices of each pair of edges matched by ϕ. By deleting vertices v1 and v2
and suppressing the subdivision vertices (that is, removing them and identifying each pair of
incident edges) we obtain a skeleton Gµ that has size O(deg(u1)) = O(deg(u2)). Finally, we
apply Steps 5 and 6 to Gµ to obtain the final SPQR-tree. Again, as the partner vertex of
every virtual vertex in the allocation skeletons of u is part of a triconnected skeleton, applying
Integrate exhaustively in Step 6 yields triconnected skeletons. As previously discussed, the
preprocessing and clean-up steps run in time linear in degree of the affected vertices, thus
the overall runtime is O(deg(u1)) = O(deg(u2)) in this case. ◀

5.1 Maintaining planarity and vertex rotations
Note that expanding a vertex of a planar graph using another planar graph using Insert-
GraphSPQR (or merging two SPQR-trees of planar graphs using Corollary 9) might actually
yield a non-planar graph. This is, e.g., because the rigids of both graphs might require
incompatible orders for the neighbors of the replaced vertex. The aim of this section is to
efficiently detect this case, that is a planar graph turning non-planar. To check a general
graph for planarity, it suffices to check the rigids in its SPQR-tree for planarity and each rigid
allows exactly two planar embeddings, where one is the reverse of the other [7]. Thus, if a
graph becomes non-planar through an application of InsertGraphSPQR, this will be noticeable
from the triconnected allocation skeletons of the replaced vertex. To be able to immediately
report if the instance became non-planar, we need to maintain a rotation, that is a cyclic
order of all incident edges, for each vertex in any triconnected skeleton. Note that we do not
track the direction of the orders, that is we only store the order up to reversal. As discussed
later, the exact orders can also be maintained with a slight overhead.

▶ Theorem 10. SPQR-trees support the following operations:
InsertGraphSPQR(S, u, Gν , ϕ): expansion of a single vertex u in time O(|Gν |),
MergeSPQR(S1, S2, u1, u2, ϕ): merging of two SPQR-trees in time O(deg(u1)),
IsPlanar: queries whether the represented graph is planar in time O(1), and
Rotation(u): queries for one of the two possible rotations of vertices u in planar tricon-
nected skeletons in time O(1).

Proof. Note that the flag IsPlanar together with the Rotation information can be computed
in linear time when creating a new SPQR-tree and that expanding a vertex or merging

S. D. Fink and I. Rutter 7:15

two SPQR-trees cannot turn a non-planar graph planar. We make the following changes
to the operations InsertGraphSPQR and MergeSPQR to maintain the new information. After
a triconnected component is split in Step 2 we now introduce further structure to ensure
that the embedding is maintained on both sides. The occupied edges generated around the
split-off vertex v (and those around its copy v′) are subdivided and connected cyclically
according to Rotation(v). Instead of “stars”, we thus now generate occupied “wheels” that
encode the edge ordering in the embedding of the triconnected component. When generating
the SPQR-tree of the modified subgraph in Step 5, we also generate a planar embedding for
all its triconnected skeletons. If no planar embedding can be found for at least one skeleton,
we report that the resulting instance is non-planar by setting IsPlanar to false. Otherwise,
after performing all splits indicated by the SPQR-tree, we assign Rotation by generating
embeddings for all new rigids. Note that for all skeletons with virtual vertices, the generated
embedding will be compatible with the one of the neighboring triconnected component, that
is, the rotation of each virtual vertex will line up with that of its matched partner vertex,
thanks to the inserted wheel. Finally, before applying Integrate in Step 6, we contract each
occupied wheel into a single vertex to re-obtain occupied stars. The creation and contraction
of wheels adds an overhead that is at most linear in the degree of the expanded vertex and
the generation of embeddings for the rigids can be done in time linear in the size of the rigid.
Thus, this does not affect the asymptotic runtime of both operations. ◀

▶ Corollary 11. The data structure from Theorem 10 can be adapted to also provide the exact
rotations with matching direction for every vertex in a rigid. Furthermore, it can support
queries whether two vertices v1, v2 are connected by at least 3 different vertex-disjoint paths
via 3Paths(v1, v2) in O((deg(v1)+deg(v2)) ·α(n)) time. These adaptions change the runtime
of InsertGraphSPQR to O(deg(u) · α(n) + |Gν |), that of MergeSPQR to O(deg(u1) · α(n)), and
that of Rotation(u) to O(α(n)).

Proof. The exact rotation information for Rotation can be maintained by using union-find
to keep track of the rigid a vertex belongs to and synchronizing the reversal of all vertices
within one rigid when two rigids are merged by Integrate as follows. We create a union-find
set for every vertex in a triconnected component and apply Union to all vertices in the same
rigid. Next to the pointer indicating the representative in the union-find structure, we store
a boolean flag indicating whether the rotation information for the current vertex is reversed
with regard to rotation of its direct representative. To find whether a Rotation needs to
be flipped, we accumulate all flags along the path to the actual representative of a vertex
by using an exclusive-or. As Rotation(u) thus relies on the Find operation, its amortized
runtime is O(α(n)). When merging two rigids with Integrate, we also perform a Union on
their respective representatives (which we need to Find first), making Integrate(S, (vα, vβ))
run in O(deg(vα) + α(n)). We also compare the Rotation of the replaced vertices and flip
the flag stored with the vertex that does not end up as the representative if they do not
match. In total, this makes InsertGraphSPQR run in O(deg(u) · α(n) + |Gν |) time as there
can be up to deg(u) split rigids. Furthermore, MergeSPQR now runs in O(deg(u1) · α(n)) time.

Maintaining the information in which rigid a skeleton vertex is contained in can then
also be used to answer queries whether two arbitrary vertices are connected by three disjoint
paths. This is exactly the case if they are part of the same rigid, appear as poles of the same
bond or are connected by a virtual edge in a polygon. This can be checked by enumerating
all allocation skeletons of both vertices, which can be done in time linear in their degree. As
finding each of the skeletons may require a Find call, the total runtime for this is bounded
by O((deg(v1) + deg(v2)) · α(n)). ◀

CGT

7:16 Maintaining Triconnected Components under Node Expansion

6 Applications

In this section, we show how extended skeleton decompositions and their dynamic operation
InsertGraphSPQR can be used to improve the runtime of the algorithm by Bläsius et al. [4]
for solving Synchronized Planarity and how this transfers to other constrained planarity
variants. Formally, the problem itself is defined as follows.

▶ Problem 1. Synchronized Planarity5

Given graph G and a set P, where each pipe ρ ∈ P consists of two distinct vertices
v1, v2 ∈ V (G) and a bijection φρ between the edges incident to v1 and those incident
to v2, and each vertex is part of at most one pipe

Question Is there a drawing of G where for each pipe ρ = (v1, v2, φρ), the cyclic order of
edges incident to v1 lines up with the order of edges incident to v2 under the bijection φρ?

The algorithm for solving Synchronized Planarity works by removing an arbitrary
pipe each step, using one of three operations depending on the graphs around the matched
vertices [4]; see also Figure 6. A more elaborate summary of the operations is also given
in [10]. Some of these operations require so-called embedding trees, which describe all
possible rotations of a single vertex in a planar graph and are used to communicate embed-
ding restrictions between vertices with synchronized rotation. Without our optimizations,
computing an embedding tree requires time linear in the size of the concerned biconnected
component, that is O(m). Once their embedding trees are available, each of the at most O(m)
executed operations runs in time linear in the degree of the pipe it is applied on, that is in
O(∆) ⊂ O(m) [4]. Thus, being able to generate these embedding trees without an overhead
over the operation that uses them, by maintaining the SPQR-trees they can be derived from
is our main contribution towards the speedup of the Synchronized Planarity algorithm.

6.1 Embedding trees
An embedding tree Tv for a vertex v of a biconnected graph G describes the possible cyclic
orderings or rotations of the edges incident to v in all planar embeddings of G [5]. The
leaves of Tv are the edges incident to v, while its inner nodes are partitioned into two
categories: Q-nodes define an up-to-reversal fixed rotation of their incident tree edges, while
P-nodes allow arbitrary rotation; see Figure 1d. To generate the embedding tree we use the
observation about the relationship of SPQR-trees and embedding trees described by Bläsius
and Rutter [3, Section 2.5]: there is a bijection between the P- and Q-nodes in the embedding
tree of v and the bond and triconnected allocation skeletons of v in the SPQR-tree of G,
respectively.

▶ Lemma 12. Let S be an SPQR-tree with a planar represented graph GS . The embedding
tree for a vertex v ∈ GS can be found in time O(deg(v)).

Proof. We use the rotation information from Theorem 10 and furthermore maintain an
(arbitrary) allocation vertex for each vertex in GS . To compute the embedding tree of a
vertex v starting at the allocation vertex u of v, we will explore the SPQR-tree by using
twinE on one of the edges incident to u and then finding the next allocation vertex of v

as one endpoint of the obtained edge. If u has degree 2, it is part of a polygon skeleton

5 We simplify the definition and disregard the originally included Q-vertices as they can be modeled using
pipes [4, Section 5].

S. D. Fink and I. Rutter 7:17

(a)

(b)

(c)

Figure 6 Schematic representation of the three operations used by Bläsius et al. [4] for solving
Synchronized Planarity. Matched vertices are shown as bigger disks, the matching (i.e., the
pipes) is indicated by the orange dotted lines. Top: Two cutvertices matched with each other
(left), the result of splitting off (“encapsulating”) their incident blocks (middle) and the bipartite
graph resulting from joining both cutvertices (right). Middle: A matched non-cutvertex with a
non-trivial embedding tree (left) that is propagated to replace both the vertex and its partner (right).
Constraints that only synchronize a binary decision (e.g. because they correspond to a Q-node in
the embedding tree) are shown as same-colored squares. Bottom: Three different cases of matched
vertices with trivial embedding trees (blue) and how their pipes can be removed or replaced (red).

that does not induce a node in the embedding tree. We thus move on to its neighboring
allocation skeletons and will also similarly skip over any other polygon skeleton we encounter.
If u has degree 3 or greater, we inspect two arbitrary incident edges: if they lead to the
same vertex, u is the pole of a bond, and we generate a P-node. Otherwise it is part of a
triconnected component, and we generate a Q-node. We now iterate over the edges incident
to u, in the case of a triconnected component using the order given by the rotation of u. For
each real edge, we attach a corresponding leaf to the newly generated node. The graph edge
corresponding to the leaf can be obtained from origE. For each virtual edge, we recurse on
the respective neighboring skeleton and attach the recursively generated node to the current
node. As u can only be part of deg(u) many skeletons, which form a subtree of TS , and the
allocation vertices of u in total only have O(deg(u)) many virtual and real edges incident,
this procedure yields the embedding tree of u in time linear in its degree. ◀

6.2 Synchronized planarity
We now show how we reduce the runtime of solving Synchronized Planarity. We do so
by generating an SPQR-tree upfront, maintaining it throughout all applied operations, and
deriving any needed embedding tree from the SPQR-tree.

▶ Theorem 13. Synchronized Planarity can be solved in time in O(m · ∆), where m is
the number of edges and ∆ is the maximum degree of a pipe.

CGT

7:18 Maintaining Triconnected Components under Node Expansion

Proof. The algorithm works by splitting (i.e., removing and replacing by smaller ones) the
pipes representing synchronization constraints until they are small enough to be trivial. It
does so by exhaustively applying the three operations EncapsulateAndJoin, PropagatePQ
and SimplifyMatching depending on the graph structure around the pairs of synchronized
vertices. As mentioned by Bläsius et al., all operations run in time linear in the degree of the
pipe they are applied on if the used embedding trees are known, and O(m) operations are
sufficient to solve a given instance [4]. Our modification is that we maintain an SPQR-tree
for each biconnected component and then generate the needed embedding trees on-demand
using Lemma 12.

Operation EncapsulateAndJoin generates a new bipartite component representing how
the edges of the blocks incident to two synchronized cutvertices are matched with each other.
The size of this component is linear in the degree of the synchronized vertices. Thus, we can
freshly compute the SPQR-tree for the generated component in linear time, which also does
not negatively impact the running time. The only other change made by this operation is
that both cutvertices are split up according to their incident blocks; see Figure 6a. As this
does not affect the SPQR-trees of the blocks, there are no further updates necessary.

PropagatePQ takes the non-trivial embedding tree of one synchronized vertex v and inserts
copies of the tree in place of v and its partner, respectively. Synchronization constraints on
the inner vertices of the inserted trees are used to ensure that the trees are embedded in
the same way; see Figure 6b. We use InsertGraphSPQR to also insert the embedding tree
into the respective SPQR trees, representing Q-nodes using wheels. When propagating into
a cutvertex we also need to check whether two or more incident blocks merge. We form
equivalence classes on the incident blocks, where two blocks are in the same class if 1) the two
subtrees induced by their respective edges share at least two nodes 2) both induced subtrees
share a Q-node that has degree at least 2 in both subtrees. Blocks in the same equivalence
class will end up in the same biconnected component as follows: We construct the subtree
induced by all edges in the equivalence class and add a single further node for each block
in the class, connecting all leaves to the node of the block the edges they represent lead to.
We calculate the SPQR-tree for this biconnected graph and then merge the SPQR-trees of
the individual blocks into it by applying Corollary 9. As InsertGraphSPQR (and similarly
all MergeSPQR applications) runs in time linear in the size of the inserted embedding tree,
which is limited by the degree of the vertex it represents, this does not negatively impact the
running time of the operation.

Operation SimplifyMatching can be applied if the graph around a synchronized vertex v

allows arbitrary rotations of v, that is the embedding tree of v is trivial. In this case, the
pipe can be removed without modifying the graph structure; see Figure 6c. As this operation
makes no changes to the graph, no updates to the SPQR-trees are necessary.

Furthermore, as we now no longer need to iterate over whole biconnected components to
generate the embedding trees, we are also no longer required to ensure those components do
not grow too large. We can thus also directly contract pipes between two distinct biconnected
components using Corollary 9 instead of having to insert embedding trees using PropagatePQ.
This may improve the practical runtime, as PropagatePQ might require further operations
to clean up the generated pipes, while the direct contraction entirely removes a pipe without
generating new ones. ◀

6.3 Other constrained planarity variants
The speed-ups for Connected SEFE, Partially PQ-constrained Planarity, Row-
Column Independent NodeTrix Planarity, and Strip Planarity in Table 1 follow

S. D. Fink and I. Rutter 7:19

directly by combining their linear reduction to Synchronized Planarity by Bläsius et
al. [4] with the improved runtime for Synchronized Planarity from Theorem 13. For
Clustered Planarity, we provide a more detailed analysis. Formally, this problem is
defined as follows.

▶ Problem 2. Clustered Planarity
Given graph G, rooted tree T , cluster assignment function γ : V (G) → V (T)
Question Is there a planar drawing where, for each cluster c ∈ V (T), we can add a simple

closed region that
1. encloses exactly the vertices mapped to c or one of its descendants in T , and
2. has a border that crosses each edge that connects a vertex within its interior to a

vertex on its outside exactly once, but no other edge or cluster region border?

▶ Corollary 14. Clustered Planarity can be solved in time in O(n + d · ∆), where d

is the total number of crossings between cluster borders and edges and ∆ is the maximum
number of edge crossings on a single cluster border.

Proof. Note that for a simple graph to be planar, the number of edges has to be linear in the
number of vertices. We apply the reduction from Clustered Planarity to Synchronized
Planarity as described by Bläsius et al. [4]. We then generate an SPQR-tree for every
component of the obtained instance with size in O(n+d) in linear time. The instance contains
one pipe for every cluster boundary, where the degree of a pipe corresponds to the number
of edges crossing the respective cluster boundary. Thus, the potential described by Bläsius
et al. [4], which sums up the degrees of all pipes with a constant factor depending on the
endpoints of each pipe, is in O(d). Each operation applied when solving the Synchronized
Planarity instance runs in time O(∆) (the maximum degree of a pipe) and reduces the
potential by at least 1. Thus, a reduced instance without pipes, which can be solved in linear
time, can be reached in O(d · ∆) time. ◀

References
1 P. Angelini, T. Bläsius, and I. Rutter. Testing mutual duality of planar graphs. International

Journal of Computational Geometry & Applications, 24(4):325–346, 2014. arXiv:1303.1640,
doi:10.1142/S0218195914600103.

2 P. Angelini, G. D. Lozzo, G. Di Battista, and F. Frati. Strip planarity testing for embedded
planar graphs. Algorithmica, 77(4):1022–1059, 2016. doi:10.1007/s00453-016-0128-9.

3 T. Bläsius and I. Rutter. Simultaneous PQ-ordering with applications to constrained embedding
problems. ACM Transactions on Algorithms, 12(2):16:1–16:46, 2016. doi:10.1145/2738054.

4 T. Bläsius, S. D. Fink, and I. Rutter. Synchronized planarity with applications to constrained
planarity problems. ACM Transactions on Algorithms, 19(4):1–23, Sept. 2023. arXiv:2007.
15362, doi:10.1145/3607474.

5 K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences,
13(3):335–379, 1976. doi:10.1016/s0022-0000(76)80045-1.

6 G. Di Battista and R. Tamassia. On-line maintenance of triconnected components with
SPQR-trees. Algorithmica, 15(4):302–318, 1996. doi:10.1007/bf01961541.

7 G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on Computing,
25(5):956–997, 1996. doi:10.1137/s0097539794280736.

8 D. Eppstein, Z. Galil, G. F. Italiano, and T. H. Spencer. Separator based sparsification.
Journal of Computer and System Sciences, 52(1):3–27, 1996. doi:10.1006/jcss.1996.0002.

CGT

https://arxiv.org/abs/1303.1640
https://doi.org/10.1142/S0218195914600103
https://doi.org/10.1007/s00453-016-0128-9
https://doi.org/10.1145/2738054
https://arxiv.org/abs/2007.15362
https://arxiv.org/abs/2007.15362
https://doi.org/10.1145/3607474
https://doi.org/10.1016/s0022-0000(76)80045-1
https://doi.org/10.1007/bf01961541
https://doi.org/10.1137/s0097539794280736
https://doi.org/10.1006/jcss.1996.0002

7:20 Maintaining Triconnected Components under Node Expansion

9 S. D. Fink and I. Rutter. Maintaining triconnected components under node expansion. In
M. Mavronicolas, editor, Proceedings of the 13th International Conference on Algorithms and
Complexity (CIAC’23), volume 13898 of Lecture Notes in Computer Science, pages 202–216.
Springer, 2023. doi:10.1007/978-3-031-30448-4_15.

10 S. D. Fink and I. Rutter. Constrained Planarity in Practice: Engineering the Synchronized
Planarity Algorithm, pages 1–14. Society for Industrial and Applied Mathematics, 2024.
doi:10.1137/1.9781611977929.1.

11 R. Fulek and C. D. Tóth. Atomic embeddability, clustered planarity, and thickenability.
Journal of the ACM, 69(2):13:1–13:34, 2022. arXiv:1907.13086v1, doi:10.1145/3502264.

12 C. Gutwenger. Application of SPQR-trees in the planarization approach for drawing graphs.
PhD thesis, 2010. URL: https://eldorado.tu-dortmund.de/bitstream/2003/27430/1/
diss_gutwenger.pdf.

13 C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In Proceedings
of the 8th International Symposium on Graph Drawing (GD’02), pages 77–90. Springer, 2001.
doi:10.1007/3-540-44541-2_8.

14 J. Holm and E. Rotenberg. Fully-dynamic planarity testing in polylogarithmic time. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC’20),
pages 167–180. ACM, 2020. arXiv:1911.03449, doi:10.1145/3357713.3384249.

15 J. Holm and E. Rotenberg. Worst-case polylog incremental SPQR-trees: Embeddings, planarity,
and triconnectivity. In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’20), pages 2378–2397. SIAM, 2020. doi:10.1137/1.9781611975994.146.

16 J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM
Journal on Computing, 2(3):135–158, 1973. doi:10.1137/0202012.

17 G. Liotta, I. Rutter, and A. Tappini. Simultaneous FPQ-ordering and hybrid planarity testing.
Theoretical Computer Science, 874:59–79, June 2021. doi:10.1016/j.tcs.2021.05.012.

18 S. Mac Lane. A structural characterization of planar combinatorial graphs. Duke Mathematical
Journal, 3(3):460–472, 1937. doi:10.1215/S0012-7094-37-00336-3.

19 R. Weiskircher. New applications of SPQR-trees in graph drawing. PhD thesis, Universität
des Saarlandes, 2002. doi:10.22028/D291-25752.

https://doi.org/10.1007/978-3-031-30448-4_15
https://doi.org/10.1137/1.9781611977929.1
https://arxiv.org/abs/1907.13086v1
https://doi.org/10.1145/3502264
https://eldorado.tu-dortmund.de/bitstream/2003/27430/1/diss_gutwenger.pdf
https://eldorado.tu-dortmund.de/bitstream/2003/27430/1/diss_gutwenger.pdf
https://doi.org/10.1007/3-540-44541-2_8
https://arxiv.org/abs/1911.03449
https://doi.org/10.1145/3357713.3384249
https://doi.org/10.1137/1.9781611975994.146
https://doi.org/10.1137/0202012
https://doi.org/10.1016/j.tcs.2021.05.012
https://doi.org/10.1215/S0012-7094-37-00336-3
https://doi.org/10.22028/D291-25752

	1 Introduction
	2 Preliminaries
	3 Skeleton decompositions
	4 Extended skeleton decompositions
	5 Node expansion in extended skeleton decompositions
	5.1 Maintaining planarity and vertex rotations

	6 Applications
	6.1 Embedding trees
	6.2 Synchronized planarity
	6.3 Other constrained planarity variants

