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Abstract
In this paper, we study drawings of directed graphs. We use the L-drawing standard, where each
edge is represented by a polygonal chain that consists of a vertical line-segment incident to the
source of the edge and a horizontal line-segment incident to the target.

First, we consider planar L-drawings. We provide necessary conditions for the existence of these
drawings and show that testing for the existence of a planar L-drawing is an NP-complete problem.
We also show how to decide in linear time whether there exists a planar L-drawing of a plane directed
graph with a fixed assignment of the edges to the four sides (top, bottom, left, and right) of the
vertices.

Second, we consider upward- (resp. upward-rightward-) planar L-drawings. We provide upper
bounds on the maximum number of edges of graphs admitting such drawings. Moreover, we
characterize the directed st-graphs admitting an upward- (resp. upward-rightward-) planar L-drawing
as exactly those admitting an embedding supporting a bitonic (resp. monotonically decreasing)
st-ordering.
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7:2 Planar L-Drawings of Directed Graphs

1 Introduction

A (simple, finite) directed graph G = (V,E) is a pair consisting of a finite set V of vertices
and a finite set E ⊆ {(u, v) ∈ V × V ;u 6= v} of ordered pairs of vertices. In an L-drawing
of a directed graph each vertex v is assigned a point in the plane with exclusive integer x-
and y-coordinates, and each directed edge (u, v) is assigned a polygonal chain consisting
of a vertical segment starting at u and a horizontal segment ending at v [4]. Thus, an
edge may leave a vertex to the top or the bottom and enter a vertex from the right or
the left, respectively; we say that the edge uses the top, bottom, right, or left port of
its end-vertices, respectively. The drawings of two edges may cross and partially overlap,
in either their horizontal or vertical segments, following the model of Kornaropoulos and
Tollis [22]. The ambiguity among crossings and bends is resolved by replacing bends with
small rounded junctions. An L-drawing in which edges possibly overlap, but do not cross, is
a planar L-drawing (see, e.g., Figure 1e). A planar L-drawing is upward planar if its edges
are y-monotone (see, e.g., Figure 1b), and it is upward-rightward planar if its edges are
simultaneously x-monotone and y-monotone.
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Figure 1 (a) A bitonic st-orientation that admits an upward-planar L-drawing (b). (c) The
corresponding drawing in the Kandinsky model. (d) An upward-planar st-graph that does not admit
an upward-planar L-drawing. (e) A planar L-drawing of the graph in (d).

Planar L-drawings correspond to drawings in the Kandinsky model [17] with exactly one
bend per edge and with some restrictions on the angles around each vertex. See Theorem 1
for details and Figure 1c for an example of a Kandinsky drawing. It is NP-complete to decide
whether a multigraph has a planar embedding that allows a Kandinsky drawing with at most
one bend per edge [8, 9]. On the other hand, every simple planar graph has a Kandinsky
drawing with at most one bend per edge [9]. Bend-minimization in the Kandinsky-model
is NP-complete [8] even if a planar embedding is given, but can be approximated within a
factor of two [5, 16]. Heuristics for drawings in the Kandinsky model with so-called empty
faces and few bends have been discussed by Bekos et al. [6].

Planar L-drawings can also be seen as a directed version of plus-contact-representations [7,
15]: each vertex is represented by a “plus” consisting of a horizontal and vertical segment
that intersect. Segments of two vertices may touch, but neither cross nor overlap. There
is an edge (v, w) if and only if the vertical segment of v and the horizontal segment of w
touch. Upward-planar L-drawings correspond to T-contact-representations, a degenerate
version of plus-contact-representations in which the vertical segment of the plus representing
a vertex is only above its horizontal segment. Each undirected planar graph admits a T-
contact-representation [12], and, thus, can be oriented such that it admits an upward-planar
L-drawing.

In a k-modal embedding of a directed planar graph each vertex is incident to at most k
pairs of consecutive edges with opposite orientations. Planar L-drawings and upward-planar
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Figure 2 A bitonic st-ordering of a plane st-graph.

L-drawings determine 4-modal and 2-modal embeddings, respectively. In fact, all the edges
incident to a vertex v and overlapping on their horizontal segment (resp., vertical segment)
must all be incoming at v (resp., outgoing from v). Testing the existence of a 2-modal
embedding can be easily done in linear time, via a straightforward reduction to planarity
testing. On the other hand, the problem of testing the existence of a 4-modal embedding
of a directed graph G is known to be NP-complete if the maximum degree ∆ of G is larger
than or equal to 7, and it is linear-time solvable if ∆ = 6 or if G is a partial 2-tree [24].
Angelini et al. [3] study planar L-drawings of plane bimodal graphs. In particular, they show
that every bimodal graph without 2-cycles and, thus, every upward-plane graph admits a
planar L-drawing respecting the given embedding. Moreover, planar L-drawings exist for
every bimodal graph whose underlying undirected graph is a planar 3-tree, provided that
each 2-cycle is replaced by a single edge. Planar L-drawings of subdivisions of plane 4-modal
graphs with few subdivision vertices, so-called planar confluent orthogonal drawings have
been discussed by Cornelsen and Diatzko [11].

Bitonic st-orderings were introduced by Gronemann for undirected planar graphs [19]
as an alternative to canonical orderings, and have been recently extended to directed plane
graphs [21]. Given a directed graph G, v is a successor of u and u is a predecessor of v if (u, v)
is an edge of G. Intuitively, in a bitonic st-ordering of a plane st-graph, the successors of
any vertex must form an increasing and then a decreasing sequence in the given embedding.
See Figure 2 for an example. More precisely, a planar st-graph is a directed acyclic graph
with a single source s and a single sink t that admits a planar embedding in which s and t
lie on the boundary of the same face. A planar st-graph always admits an upward-planar
straight-line drawing [13]. An upward-planar drawing Γ of a planar st-graph determines an
upward-planar embedding, that is, the ordered lists S(v) of the successors of each vertex v, as
they appear from left-to-right in Γ. An st-ordering of a planar st-graph is an enumeration π
of the vertices with distinct integers, such that π(u) < π(v) for every edge (u, v). Given a
plane st-graph G = (V,E), i.e., a planar st-graph with a fixed upward-planar embedding E ,
and an st-ordering π of G, consider the ordered list S(v) = 〈v1, v2, . . . , vk〉 of the successors
of v determined by E . The list S(v) is monotonically decreasing with respect to π if, for
every i ∈ {1, . . . , k − 1}, we have that π(vi) > π(vi+1). The list S(v) is monotonically
increasing with respect to π if, for every i ∈ {1, . . . , k − 1}, it holds that π(vi) < π(vi+1).
The list S(v) is bitonic with respect to π if there is a vertex vh in S(v) such that, for
i ∈ {1, . . . , h − 1} π(vi) < π(vi+1) and, for i ∈ {h, . . . , k − 1}, π(vi) > π(vi+1). E.g., in
Figure 2, S(2) and S(5) are monotonically decreasing, S(3), S(4), and S(6) are monotonically
increasing, and the successor list of each vertex is bitonic. We say that the st-ordering π is
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7:4 Planar L-Drawings of Directed Graphs

bitonic or monotonically decreasing, respectively, if the successor list of each vertex is bitonic
or monotonically decreasing, respectively. Also, the pair 〈E , π〉 is called a bitonic pair or
monotonically decreasing pair, respectively, of G.

Bitonic st-orderings turn out to be strongly related to upward-planar L-drawings of
st-graphs. In fact, the y-coordinates of an upward-planar L-drawing yield a bitonic st-
ordering; see, e.g., Figure 1b. Gronemann used bitonic st-orderings to obtain, on the one
hand, upward-planar polyline grid drawings in quadratic area with at most |V | − 3 bends
in total [21] and, on the other hand, contact representations with upside-down oriented T-
shapes [20]. A bitonic st-ordering for biconnected undirected planar graphs can be computed
in linear time [19] and the existence of a bitonic st-ordering for plane (directed) st-graphs
can also be decided in linear time [21]. For the variable embedding setting, Chaplick et
al. [10] presented a linear-time algorithm to decide whether an st-graph admits a bitonic pair.
Gronemann [21] observed that if an st-planar graph does not admit a bitonic st-ordering,
then it is always possible to split certain edges so that the resulting graph admits such
an ordering. Generalizing the result of Chaplick et al. [10], Angelini et al. [1] described a
linear-time algorithm to compute an embedding of a planar st-graph that allows for a bitonic
st-ordering, after a minimum number of edge splits.

Our contribution. In this work, we initiate the investigation of planar and upward-planar
L-drawings. In particular, our contributions are as follows.

We establish the relationship between planar L-drawings and 1-bend Kandinsky drawings
of the underlying undirected graph (Theorem 1).
We prove that deciding whether a directed planar graph admits a planar L-drawing is
NP-complete (Theorem 3).
We show how to decide efficiently whether there is a planar L-drawing for a plane directed
graph with a fixed assignment of the edges to the four ports of the vertices (Theorem 4).
Finally, we study the density of graphs admitting an upward-planar (resp. upward-
rightward-planar) L-drawing (Theorem 5), and we characterize the planar st-graphs
admitting an upward-planar (resp. upward-rightward-planar) L-drawing as the st-graphs
admitting a bitonic (resp. monotonic decreasing) pair (Theorem 6).

Building on our last result, Angelini et al. [2] have recently provided a characterization of
general DAGs admitting an upward-planar L-drawing.

2 Preliminaries

In this section, we present definitions and preliminary results. A directed (multi-)graph
G = (V,E) consists of a finite set V of vertices and of a finite (multi-)set E of edges, which
are ordered pairs of vertices. An edge (u, v) is directed from its tail u to its head v.

Planar drawings and embeddings. A graph is planar if it admits a drawing in the plane
without edge crossings. A planar drawing Γ of a graph maps vertices to points and edges to
internally-disjoint curves in the plane connecting the points of their end-vertices. Drawing Γ
partitions the plane into topologically connected regions, called faces. The bounded faces are
the internal faces and the unbounded face is the outer face. A planar drawing determines a
circular ordering of the edges incident to each vertex. Two planar drawings of a connected
planar graph are equivalent if they determine the same orderings. A planar embedding is an
equivalence class of planar drawings. A plane graph is a planar graph with a fixed planar
embedding and with a prescribed outer face.
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Figure 3 4-modal embedding of an orientation of the octahedron.

Vertex connectivity. A graph is connected if there is a (not necessarily directed) path
between any two vertices and disconnected otherwise. A set of k vertices of a connected graph
G is a k-cut if removing such vertices from G results in a disconnected graph. A connected
graph is biconnected if it does not have any 1-cut, and a biconnected graph is triconnected if
it does not have any 2-cut. A famous result by Whitney [25] states that a planar graph has
a unique (up to a flip) planar embedding if and only if it is a subdivision of a triconnected
planar graph.

Modality. Given a planar embedding E of a directed graph G and a vertex v of G, a pair of
edges incident to v that are consecutive around v in E is alternating if they are not both
incoming or both outgoing. We say that v is k-modal, if there exist exactly k alternating pairs
of edges in the cyclic order around v. An embedding of a directed graph G is k-modal, if each
vertex is at most k-modal. A 2-modal embedding is also called bimodal. An upward-planar
drawing determines a bimodal embedding. However, the existence of a bimodal embedding is
not a sufficient condition for the existence of an upward-planar drawing. Deciding whether a
directed graph admits an upward-planar (straight-line) drawing is an NP-hard problem [18].

L-drawings. A planar L-drawing determines a 4-modal embedding. This implies that there
exist planar directed graphs that do not admit planar L-drawings. A 6-wheel whose central
vertex is incident to alternating incoming and outgoing edges is an example of a graph that
does not admit any 4-modal embedding, and therefore any planar L-drawing.

On the other hand, the existence of a 4-modal embedding is not sufficient for the existence
of a planar L-drawing. For instance, the octahedron depicted in Figure 3 does not admit a
planar L-drawing. Since the octahedron is triconnected, it admits a unique combinatorial
embedding (up to a flip). Each vertex is 4-modal. However, the rightmost vertex in a planar
L-drawing must be 0-modal or 2-modal.

Any upward-planar L-drawing of an st-graph G can be modified to obtain an upward-
planar drawing of G: Redraw each edge as a y-monotone curve arbitrarily close to the drawing
of the corresponding 1-bend orthogonal polyline while avoiding crossings and edge–edge
overlaps. However, not every upward-planar graph admits an upward-planar L-drawing.
For instance, the graph in Figure 1d contains a subgraph that does not admit a bitonic
st-ordering [21]. In Section 4 (Theorem 6), we show that this means it does not admit an
upward-planar L-drawing.

The Kandinsky model. In the Kandinsky model [17], vertices are drawn as squares of equal
size on a grid and edges—usually undirected—are drawn as orthogonal polylines on a finer
grid; see Figure 1c. Two consecutive edges in the clockwise order around a vertex define
a face and an angle in {0, π/2, π, 3π/2, 2π} in that face. In order to avoid edges running
through other vertices, the Kandinsky model requires the so-called bend-or-end property:
There is an assignment of bends to vertices with the following three properties.

CGT
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v

w

Figure 4 Assignment of bends to vertices for the bend-or-end property.

(a) Each bend is assigned to at most one vertex.
(b) A bend may only be assigned to a vertex to which it is connected by a segment (i.e., it

must be the first bend on an edge).
(c) If e1 and e2 are two consecutive edges in the clockwise order around a vertex v that form

a 0-angle inside face f , then a bend of e1 or e2 forming a 3π/2 angle inside f must be
assigned to v.

Further, the Kandinsky model requires that there are no empty faces. In an empty face, the
distance of each point in the interior of the face to the boundary of the face is at most the
smallest distance between two segments of any two edges. (Intuitively speaking, an empty
face has area close to 0.)

Given a planar L-drawing, consider a vertex v and all edges incident to one of the four
ports of v. By assigning to v all bends on these edges—except the bend furthest from v—we
satisfy the bend-or-end property. We prove this in the following theorem.

I Theorem 1. A graph has a planar L-drawing if and only if it admits a drawing in the
Kandinsky model with the following properties
1. Each edge bends exactly once.
2. At each vertex, the angle between two outgoing (or between two incoming) edges is 0 or π.
3. At each vertex, the angle between an incoming edge and an outgoing edge is π/2 or 3π/2.

Proof. Given a drawing in the Kandinsky model that meets conditions (1)–(3), we can
bundle the edges on the finer grid to lie on the coarser grid. It remains to perturb the
coordinates such that the x- and y-coordinates, respectively, of the vertices are distinct:
Assume that two vertices v and w have the same y-coordinate. Let δ > 0 be the minimum
difference in y-coordinates between v and any vertex or segment above v. Since all edges
have one bend, we can shift v upward by δ/2—changing only the drawing of edges incident
to v. Doing this iteratively yields a planar L-drawing—or a rotation of π/2 of it.

Given a planar L-drawing, we can distribute the edges on the finer grid maintaining the
embedding. Since all vertices have distinct x- and y-coordinates, there are no empty faces. It
remains to assign the bends to the vertices in order to fulfill the bend-or-end property: For
each port p (top, right, bottom, left) of a vertex v, and each edge incident to p, we assign its
bend to v except for the bend furthest from p. In the example in Figure 4, the bend furthest
from the top of v is marked with a red circle. Observe that if the bend b on an edge between
two vertices v and w is not a furthest bend for v then it is a furthest bend for w. This follows
by planarity: Namely, if bend b was neither furthest for v nor for w then there was an edge e
incident to v with b in its interior and an edge e′ incident to w with b in its interior. Thus, e
and e′ would cross at b. Hence, no bend will be assigned to two vertices. J
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3 General planar L-drawings

We consider the problem of deciding whether a graph admits a planar L-drawing. In
Section 3.1, we show that the problem is NP-complete if no planar embedding is given. In
the fixed embedding setting (Section 3.2), the problem can be formulated as an ILP. If we
additionally fix the ports, the problem can be solved in linear time.

3.1 Variable embedding setting
As a central building block for our hardness reduction we use a directed graph W that can
be constructed starting from a 4-wheel with central vertex c and rim (u, v, w, z). We orient
the edges of W so that v and z (the V-ports of W ) are sinks and u and w (the H-ports of
W ) are sources. The two outgoing edges (c, v) and (c, z) of c pass vertically through c and
are colored red; similarly, (u, c) and (w, c) pass horizontally through c and are colored blue.
Finally, we add directed edges (v, c), (z, c), (c, w), and (c, u); see the black spoke edges in
Figure 5.

w

c

v

zuw

c

z

u

wc

v

z

u

v

Figure 5 4-wheel graph W and two planar L-drawings of W .

We now describe the key property of the planar L-drawings of W .

I Lemma 2. In any planar L-drawing of W with cycle (u, v, w, z) as the outer face, the
edges of the outer face form a rectangle that contains vertex c.

Proof. In any orthogonal drawing of W , the outer cycle (u, v, w, z) forms an orthogonal
polygon P with at least four convex corners. Since any two consecutive edges on the outer
cycle have the same direction with respect to their common vertex r ∈ {u, v, w, z}, i.e., they
are either both incoming or outgoing at r, they must use the same port or two opposite ports
of r. In fact, if they used the same port, they would form an angle of 2π in the outer face
and force the edge (r, c) to use the very same port. This, however, would imply that all three
edges incident to r have the same direction, which is a contradiction. Hence each of the four
outer vertices has an angle of π in the outer face and cannot form a convex corner of P .

Since there are four edges on the outer cycle, each of which has exactly one bend, this
immediately implies that P is a rectangle whose corners are formed by the bends of the four
edges of the outer face and each of the four vertices of the outer face must lie on one of the
rectangle sides. The remaining edges to c use the port inside P , consistently bend once (left
or right) from the perspective of c, and then connect to c from all four sides. Figure 5 shows
an example. J

We are now ready to present the main result of this section.

I Theorem 3. It is NP-complete to decide whether a directed graph admits a planar L-
drawing.

Proof. We reduce from HV-rectilinear planarity testing, which is NP-hard even for bicon-
nected graphs [14]. An instance of this problem is an undirected planar graph G of vertex
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u

v

(a) for a V-edge
z

w

(b) for an H-edge

Figure 6 Edge gadgets

degree at most 4, where each edge is labeled either H or V. The task is to decide whether G
admits a planar orthogonal drawing (without bends) such that H-edges are drawn horizontally
and V-edges are drawn vertically. We call such a drawing a planar HV-drawing.

Given a biconnected HV-graph G, we construct an instance G′ of planar L-drawing by
replacing each vertex by a 4-wheel as in Figure 5, each edge (u, v) labeled V (V-edge) with
the red gadget shown in Figure 6a and each edge (w, z) labeled H (H-edge) with the blue
gadget shown in Figure 6b. For a V-edge (u, v), the two vertices of the edge gadget labeled
u and v are identified with the V-ports of the vertex gadgets of u and v. Symmetrically, for
an H-edge (w, z), the two vertices of the edge gadget labeled w and z are identified with the
H-ports of the vertex gadgets of w and z. From there, the ports connect by an edge in the
corresponding color to the central vertex of their vertex gadget. Obviously, this reduction is
polynomial in the size of G.

Our high-level construction is somewhat similar to Brückner’s NP-completeness proof for
1-Embeddability in the Kandinsky model [9, Theorem 3] in that we define gadgets that
have a very limited flexibility in terms of their embeddings to realize horizontal and vertical
edges. Yet, the internals of the gadgets themselves and the reduction are quite different.

We claim that G′ has a planar L-drawing if and only if G has a planar HV-drawing. So
first assume that G′ admits a planar L-drawing Γ′. We transform Γ′ into a planar HV-drawing.
In a first step, we draw each vertex v of G at the position of the central vertex of the vertex
gadget for v. Due to Lemma 2, the edge gadgets are attached to the bounding boxes of the
vertex gadgets. Hence, for each edge (u, v) of G, we can draw an orthogonal path from u to
v by tracing the thick edges (red for a V-edge, blue for an H-edge) in its edge gadget and
the two incident vertex gadgets (see Figures 5 and 6). This intermediate drawing (which
is a subdrawing of Γ′) is a planar orthogonal drawing of G, where each edge is an 8-bend
orthogonal staircase path with total rotation 0. Using Tamassia’s network flow model for
orthogonal graph drawings [23], we can argue that an edge with rotation 0 is equivalent to a
rectilinear edge without bends. In fact, the flow corresponding to the eight bends is cyclic
and can be reduced to a flow of value 0, which implies no bends. We refer to Brückner [9,
Lemma 7] for the details of this argument.

Now, conversely, assume that G admits a planar HV-drawing Γ. In order to show that Γ
can be transformed into an L-drawing of G′, we first “thicken” Γ by inflating vertices at grid
points to squares and edges to corresponding rectangles, see Figure 7a. To avoid crossings,
we simply refine the grid on which Γ is drawn. Since each vertex gadget in G′ can be drawn
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(a) Connections among edge gadgets with the orthogonal edge
paths highlighted as thick polylines.
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v

z

(b) Modifying the wheel gadget
into an oriented graph.

Figure 7 Gadgets of the hardness reduction

inside a square (Figure 5) and each edge gadget inside a rectangle (Figure 6), we can insert
their drawings into the thickened drawing of G as illustrated in Figure 7a. This produces an
L-drawing of G′.

To see that the problem is in NP, we note that for an embedding of a graph and a given
orthogonal representation (see Tamassia [23]) of that embedding, one can check in polynomial
time whether all edges are represented by valid L-shapes. J

We remark that the graph G′ that we construct in our reduction is a simple directed graph.
With the exception of the four double-spoke edges of the wheel graph W (see Figure 5),
each underlying undirected graph would not have multi-edges. We can, however, modify
our reduction by removing the red and blue edges in Figure 5 so that the entire graph G′
becomes an oriented graph, i.e., a graph without 2-cycles. Figure 7b shows the modified
wheel gadget W . In that case, however, when we construct the intermediate orthogonal
paths for the edges of the HV-drawing, we still use the removed “mirrored” L-shapes for the
first and last two segments of each edge path (indicated as dashed edges in Figure 7b), which
is always possible without crossings in any L-drawing of W . Otherwise the orthogonal path
between the two central vertices of the connected wheels would not have rotation 0.

3.2 Fixed embedding and port assignment
In this section, we show how to decide efficiently whether there is a planar L-drawing for a
plane directed graph with a fixed assignment of the edges to the four ports of the vertices.
Using Theorem 1 and the ILP formulation of Barth et al. [5], we first set up linear inequalities
that describe whether a plane 4-modal graph has a planar L-drawing. Using these inequalities,
we then transform our decision problem into a matching problem that can be solved in linear

CGT



7:10 Planar L-Drawings of Directed Graphs

time. We call a vertex v an in/out-vertex on a face f if v is incident to both an incoming
edge and an outgoing edge on f .

The ILP formulation is as follows. For each vertex v and each face f incident to v, we
introduce a variable xvf ∈ {0, 1, 2} that is meant to measure the angle in f at v: the angle
between two edges entering v or two edges leaving v is xvf · π and the angle between an
edge entering v and an edge leaving v is xvf · π + π/2. For each edge e that is incident to v
and f , we introduce a variable xv

fe ∈ {0, 1}. The intended meaning of xv
fe = 1 is that there

is a convex bend in face f on edge e assigned to vertex v to fulfill the bend-or-end property.
Using these variables, we now formulate four conditions that are satisfied if and only if a
given plane directed graph admits is a planar L-drawing.

(1) The angles around a vertex v sum up to 2π:

∑
f incident to v

xvf =


2 if v is 0-modal
1 if v is 2-modal
0 if v is 4-modal

(2) All edges are bent exactly once, i.e., for each edge e = {v, w} separating faces f and h,
we have

xv
fe + xv

he + xw
fe + xw

he = 1.

(3) The number of convex angles minus the number of concave angles is 4 in each inner face
and −4 in the outer face, i.e., for each face f , we have∑

e={v,w}
separates
f and h

(xv
fe − xv

he + xw
fe − xw

he) +
∑

v incident to f,
v not in/out

(2− 2xvf ) +
∑

v incident to f,
v in/out

(2− (2xvf + 1)) = ±4.

(4) The bend-or-end property is fulfilled, i.e., for any two edges e1 and e2 that are consecutive
around a vertex v and that are both incoming or both outgoing, and for the faces f1, f ,
and f2 that are separated by e1 and e2 (in the cyclic order around v), it holds that

xvf + xv
f1e1

+ xv
f2e2
≥ 1.

Note that (2) implies −xv
he − xw

he = xv
fe + xw

fe − 1. Hence, (3) yields
(3′)

∑
e={v,w}

incident to f

(xv
fe + xw

fe)−
∑

v incident to f

xvf = ±2 + (# in/out-vertices on f − deg(f))/2.

Observe that the number of in/out-vertices on a face f is odd if and only if deg(f) is odd.
Moreover, if we omit the bend-or-end property, we can formulate the remaining conditions
as an uncapacitated network flow problem. The network has three types of nodes: one for
each vertex, face, and edge of the graph. It has two types of edges: from vertices to incident
faces and from faces to incident edges. The supplies are (4− k)/2 for the k-modal vertices,
±2 + (#in/out-vertices− deg(f))/2 for a face f , and −1 for the edges.

I Theorem 4. Given a directed plane graph G and, for each edge e, labels out(e) ∈
{top,bottom} and in(e) ∈ {right, left}, we can decide in linear time whether G admits
a planar L-drawing in which each edge e leaves its tail at out(e) and enters its head at in(e).
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Proof. Observe that the labeling determines the bends, i.e., the value xv
fe + xw

fe for each
edge e = (v, w) and each incident face f . First, we have to check whether the cyclic order
of the edges around a vertex is compatible with the labels, i.e., in clockwise order we have
outgoing edges labeled (top, · ), incoming edges labeled ( · , left), outgoing edges labeled
(bottom, · ), and incoming edges labeled ( · , right). For a fixed port, edges bending to the
left must precede edges bending to the right. We call an edge a middle edge of a port if it is
the last edge bending to the left or the first edge bending to the right. Observe that each
port has zero, one, or two middle edges. For example, the top port of vertex v in Figure 4
has two middle edges, namely the second edge and the third edge from the left.

If the compatibility check does not fail then the labels also determine the angles around
the vertices, i.e., the variables xvf for each vertex v and each incidence to a face f . Now, we
check whether these values fulfill Conditions 1, 2, and 3’.

Finally, we have to check, whether Condition 4, i.e., the bend-or-end property can be
fulfilled. To this end, we have to assign edges with concave bends to zero angles at an incident
vertex in the same face. We must assign, for each port of a vertex v, all but the middle edges
to v. If at this stage an edge is assigned to two vertices, then G does not admit a planar
L-drawing with the given port assignment.

Otherwise, it remains to deal with the zero angles between two middle edges of a port.
To this end, consider the following graph B that has two types of nodes; a port node for each
port with two middle edges and a middle-edge node for each edge that is a middle edge of at
least one port and that is not yet assigned to a vertex. A port node corresponding to a port
of a vertex v and a middle-edge node corresponding to an edge e are adjacent in B if and
only if e is a middle edge of v. Observe that B is a bipartite graph of maximum degree two
and, thus, consists of paths, even length cycles, and isolated nodes. We have to test whether
B admits a matching in which every port node is matched. This is true if and only if no
port node is isolated and there is no maximal path starting and ending at a port node. J

4 Upward- and upward-rightward planar L-drawings

In this section, we study the density (Theorem 5) and provide a characterization (Theorem 6)
of the graphs that admit upward-planar and upward-rightward planar L-drawings.

We start by showing an upper bound on the maximum number of edges of a graph that
admits an (upward-, upward-rightward-planar) L-drawing.

I Theorem 5. A directed graph with n vertices that admits a planar, upward-planar, or
upward-rightward-planar L-drawing has at most 4n− 6, 3n− 6, or 2n− 3 edges and these
bounds are tight.

Proof. In the following, let n denote the number of vertices of the given graph.
planar: Consider for each port of a vertex the furthest bend. Recall that the bend on any

edge is the furthest bend of at least one of its end-vertices. On the other hand each vertex
has at most four furthest bends. Thus there can be at most 4n edges. Consider now the
outer face. The topmost (bottommost, rightmost, leftmost) vertex doesn’t have a furthest
bend at its top (bottom, right, left) port. Moreover in a maximal L-planar drawing there
are at least two edges e1 and e2 on the outer face such that its bend is a furthest bend of
both end-vertices: Consider the bottommost vertex v. If v is neither the leftmost nor the
rightmost vertex, let u1 and u2 be the leftmost and rightmost vertex such that there is
an edge e1 = (u1, v) and e2 = (u2, v), respectively. If v is the leftmost (rightmost) vertex,
let u be the rightmost (leftmost) vertex such that there is an edge e1 = (u, v) and let
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Figure 8 A graph with n vertices and (a) 4n − 6 edges with a planar L-drawing (b) 3n − 6 edges
with an upward-planar L-drawing. Labels indicate vertex degrees.

w be the topmost vertex such that there is an edge e2 = (v, w). This yields the 4n− 6
bound. Finally, Figure 8a shows a graph with a planar L-drawing and 4n− 6 edges.

upward-planar: Since upward-planar graphs must be acyclic, they cannot contain 2-cycles.
Thus, there are at most 3n− 6 edges. Figure 8b shows a graph with an upward-planar
L-drawing and 3n− 6 edges.

upward-rightward-planar: Each vertex has at most two furthest bends. The bottommost
vertex has no furthest bend to the left, the rightmost vertex has no furthest bend to the
top and in a maximal upward-rightward planar L-drawing there is at least one bend that
is furthest for both end-vertices. Hence, there are at most 2n− 3 edges. Omitting all but
the upward-rightward edges in Figure 8a yields a graph with 2n− 3 edges.

J

Although characterizing the plane directed graphs that admit a planar L-drawing seems
to be an elusive goal, we can characterize two natural subclasses of planar L-drawings by
means of bitonic st-orderings.

I Theorem 6. A planar st-graph admits an upward-planar (resp. upward-rightward-planar)
L-drawing if and only if it admits a bitonic (resp. monotonically decreasing) pair.

Proof. Let G = (V,E) be a planar st-graph with n vertices.
“⇒”: The y-coordinates of an upward- (upward-rightward-) planar L-drawing of G yield a
bitonic (monotonically decreasing) st-ordering π with respect to the embedding E given by
the L-drawing.
“⇐”: Given a bitonic (monotonically decreasing) st-ordering π of G, we construct an upward-
(upward-rightward-) planar L-drawing of G using an idea of Gronemann [21]. For i = 1, . . . , n,
let vi ∈ V be the vertex with π(vi) = i, set the y-coordinate of vi to i, and let Gi be the
subgraph of G induced by Vi = {v1, . . . , vi}.

For the x-coordinates we construct a partial order ≺ in such a way that, for i = 2, . . . , n,
all vertices on the outer face of Gi are comparable and the L-drawing of Gi is planar,
embedding preserving, and has the property that any edge from Vi to V \ Vi can be added
upward and in an embedding-preserving way, no matter how we choose the x-coordinates of
vi+1, . . . , vn.
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u1` r

vismax

v−2 v−1

Gi−1
Gi−1

(a)

v−2 v−1

u1 uk

vi

Gi−1
Gi−1

(b)

Figure 9 How to turn a bitonic st-ordering into a planar L-drawing.

During the construction, we augment Gi to Gi in such a way that the outer face fGi
of Gi

is a simple cycle. We start by adding two artificial vertices v−1 and v−2 with y-coordinates
−1 and −2, respectively, that are connected to v1 and to each other. We set v−2 ≺ v1 ≺ v−1.
Now let i ∈ {2, . . . , n} and assume that we have already fixed the relative coordinates of Gi−1.
Let u1, . . . , uk be the predecessors of vi in ascending order with respect to ≺.

If π is monotonically decreasing or if k = 1, we first augment the graph. In the former
case, we add to G an edge between vi and the right neighbor of uk on fGi−1

. In the latter
case, let ` be the left neighbor and let r be the right neighbor of u1 on fGi−1

, respectively;
see Figure 9a. Following Gronemann [21], we add a dummy edge from either ` or r to vi:
Let smax be the successor of u1 that is maximum with respect to the st-ordering. We go
in counter-clockwise circular order of the edges around u1 from (u1, vi) to the left. If we
hit (u1, smax) before we hit (u1, `), we insert the edge (r, vi) into G, otherwise we insert the
edge (`, vi). E.g., when processing the graph in Figure 1a, we insert the edges (v−1, 2) and
(v−2, 4). Note that inserting the dummy edge does not violate planarity since, on that side,
uk does not have any outgoing edge between (uk, vi) and fGi−1

.
We now extend ≺. Let u1, . . . , uk be the k ≥ 2 predecessors of vi in the possibly

augmented graph; see Figure 9b. Since G has a sink only on the outer face, we can place vi

anywhere between u1 and uk. Adding the two conditions uk−1 ≺ vi ≺ uk also ensures that
all edges except (uk, vi) are rightward. But (uk, vi) was introduced only as a dummy edge
for the case of a monotonically decreasing π.

Any linear order that is compatible with ≺ yields unique x-coordinates in {1, . . . , n}
for the vertices of G. Together with the y-coordinates that we fixed above, we now have
positions for the vertices in an upward- (upward-rightward-) planar L-drawing of G. Finally,
we remove the dummy edges that we inserted earlier. J

We have thus also obtained a new proof of the following statement.

I Corollary 7. Any undirected planar graph can be oriented such that it admits an upward-
planar L-drawing.

Proof. Triangulate the graph G and construct a bitonic st-ordering for undirected graphs [19].
Orient the edges from smaller to larger st-numbers. J

5 Conclusions and open problems

In this work, we initiated the investigation of planar and upward-planar L-drawings of
directed graphs. In particular, we established interesting connections between the problem
of computing drawings respecting the above drawing styles on one hand, and Kandinsky
drawings and bitonic st-orderings on the other hand. Several interesting questions arise from
our research.
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1. Can we efficiently test whether a directed plane graph admits a planar L-drawing?
2. Can we efficiently test whether an upward-plane graph with multiple sources and sinks

admits an upward-planar L-drawing?
3. Can we efficiently recognize the directed graphs that are edge maximal subject to having

a planar L-drawing?
4. Does every bimodal graph have a planar L-drawing? Recall that the existence of planar

L-drawings of bimodal graphs has been confirmed only if the input does not contain
2-cycles [3].
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