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Abstract
Reeb graphs are widely used in a range of fields for the purposes of analyzing and comparing complex
spaces via a simpler combinatorial object. Further, they are closely related to extended persistence
diagrams, which largely but not completely encode the information of the Reeb graph. In this paper,
we investigate the effect on the persistence diagram of a particular continuous operation on Reeb
graphs; namely the (truncated) smoothing operation. This construction arises in the context of the
Reeb graph interleaving distance, but separately from that viewpoint provides a simplification of the
Reeb graph which continuously shrinks small loops. We then use this characterization to initiate the
study of inverse problems for Reeb graphs using smoothing by showing which paths in persistence
diagram space (commonly known as vineyards) can be realized by a path in the space of Reeb
graphs via these simple operations. This allows us to solve the inverse problem on a certain family
of piecewise linear vineyards when fixing an initial Reeb graph. While this particular application is
limited in scope, it suggests future directions to more broadly study the inverse problem on Reeb
graphs.
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1 Introduction

Reeb graphs are an important tool in topological data analysis for the purpose of visual-
izing continuous functions on complex spaces, as they yield a simplified discrete structure.
Originally developed in relation to Morse theory [29], these objects are used extensively for
shape comparison, constructing skeletons of data sets, surface simplification, and visual-
ization; for more details on these and more applications, we refer to recent surveys on the
topic [6, 30]. While some information is lost in the construction of the Reeb graph, such
simplified structures allow for more efficient methods to analyze and compare data sets.
More precisely, given a topological space M and a real valued function f : M → R, the pair
(M, f) is known as an R-space; e.g. see Figure 1. The Reeb graph of f is then obtained by
collapsing each connected component in a level set into single point, and collecting the points
together using the quotient topology. The result, with appropriate assumptions on the input,
is a 1-dimensional stratified space (i.e. a graph) along with an induced real-valued function;
we will refer to this pair as (X, f).

Given the many algorithms available to compute these objects efficiently [20, 28, 22, 21],
the Reeb graph is a practical, simplified structure which can be used for tasks ranging from
simplification to visualization. Thus, there is a practical need for ways to compare and analyze
Reeb graphs. Many possible options have been studied recently [19, 3, 16, 10, 2, 8, 12, 4, 2,
16, 3]; see [5, 30, 7] for recent surveys and discussions on practical implications and theoretical
trade-offs. This work focuses on [16, 10] which introduces the concept of smoothing a Reeb
graph as a byproduct of the interleaving distance. This smoothing operation generates a
new Reeb graph Sε(X, f) for every ε ≥ 0 which simplifies the topological structure of the
graph. In particular, it continuously removes small loops, which are often viewed as noise in
the input data.

Despite being defined via category theory, the resulting construction can be viewed from
a completely combinatorial viewpoint. An algorithm for constructing the smoothed Reeb
graph was provided in [16], and has been extended to the more recently introduced truncated
smoothing functor as well [10]. Further, it has been shown that given a Reeb graph (X, f)
with critical points S = {ai}, the smoothed Reeb graph Sε(X, f) has critical set contained
in Sε = (S − ε) ∪ (S + ε) = {a − ε, a + ε | a ∈ S} [16]. However, no exact combinatorial
characterization of the graph changes has been proven in the literature prior to this paper.

We note that R-space data can also be studied via its persistent homology, an algebraic
method for measuring topological features of shapes and functions [27, 18]. In fact, there is
a close relationship between critical values of the Reeb graph and points in the extended
persistence diagram [1, 11], which will be a key component of our work. Because of this
relationship, one might expect there to be an inverse map; i.e. given an extended persistence
diagram, can we reconstruct the Reeb graph uniquely? The answer, in general, is no since
many different Reeb graphs can have the same persistence diagram. This, of course, is to
be expected as the construction of either the Reeb graph or the persistence diagram from
input data can be viewed as a lossy process, where information is consolidated, but certainly
not preserved perfectly, from the original data. Nevertheless, these inverse problems are
increasingly of interest in topological data analysis as a whole [26, 15], as they can provide
insight into how much information is lost in the process of computing such a topological
signature, be it a persistence diagram or a Reeb graph.

Note that the idea of how changes in a Reeb graph (such as those induced by a change
in the original function used to construct it) affect the persistence diagrams is not new in
the literature. For example, prior work compared Reeb graphs using the bottleneck distance
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Figure 1 Reeb graph (right) for a given space with real valued function (left) defined by height.

on the corresponding persistence diagram, and was able to show that the comparison was
stable under perturbations to the Reeb graph inputs [8, 9]. Further, the exact movement
of the points in the extended persistence diagram related to the smoothing operation on
Reeb graphs was also studied in [24]. However in that paper, there is more of a focus on the
algebraic structure of the persistence module. In contrast, our work focuses on the explicit
geometric changes in the Reeb graphs to draw the same conclusion and then utilizes this
characterization to study the inverse problem explicitly.

Our contributions: The main contribution of this paper is to initiate the study of
inverse problems on vineyards realized by Reeb graphs, using the smoothing and truncated
functors to determine when such an inverse can be determined. While this is defined for an
admittedly restricted class of paths in persistence diagram space, this work is a first step
towards broader notions of approximate inverse paths and controlled modifications of a Reeb
graph to realize a broad class of diagram changes. After introducing necessary background
and notation in Section 2, in Section 3 we explicitly enumerate all changes to a Reeb graph
under Reeb graph smoothing, and then generalize this framework for the more recently
developed truncated smoothing operation. In Section 4, we use this characterization to solve
the inverse problem in a restricted setting for Reeb graphs using smoothing and truncated
smoothing, by showing that certain paths in persistence diagram space (commonly known as
vineyards [13]) can be realized by a path in the space of Reeb graphs. Namely, using our
characterization of how truncated smoothing affects the combinatorial structure of the Reeb
graph, we are able to determine sufficient restrictions on a time varying set of persistence
diagrams, so that as long as an initial Reeb graph is specified, we can determine a set of
time varying Reeb graphs which realize the vineyard. We conclude in Section 5 by discussing
several possible future directions motivated by our work.

2 Background and definitions

2.1 Reeb graphs

Let X be a topological space and f : X → R be continuous real-valued function. The pair
(X, f) is referred to as an R-space (or a scalar field, in some of the literature). The level
set of f at a is the set f−1(a) = {x ∈ X | f(x) = a}. We define an equivalence relation ∼f

on X by x ∼ y if and only if f(x) = f(y) = a and x and y are in the same path connected
component of the levelset f−1(a). The Reeb graph R(X, f) is the quotient space X/∼, with
an induced function inherited from the R-space given by f([x]) = f(x). (We will generally
abuse notation and call both functions f ; we similarly use X instead of (X, f) for brevity.)

For the purposes of our work, we will often divorce the idea of a Reeb graph from the
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R-space it came from. In particular, given appropriate assumptions on the input R-space,
the Reeb graph is indeed a finite graph, so we will assume that our graphs have this property.
We will assume further that all Reeb graphs are constructible, defined as follows.

▶ Definition 1. An R-space is constructible if it is homeomorphic to one constructed in the
following manner. We are given a finite set of critical points a1, . . . , an, and a collection
of spaces {Vi}n

i=1 and {Ei}n−1
i=1 . Further, we specify left attaching maps ℓi : Ei → Vi for

i = 1, · · · n − 1 and right attaching maps ri : Ei → Vi+1. We then define X to be the
quotient space

∐n
i=1(Vi × {ai})

⋃ ∐n−1
i=1 (Ei × [ai, ai+1]) with respect to the identifications

(ℓi(e), ai) ∼ (e, ai) and (ri(e), ai+1) ∼ (e, ai+1). We define the function f to be the projection
on the second factor. A constructible R-space is a Reeb graph if all the Vi and Ei are discrete,
finite sets.

A Reeb graph can be encoded by the combinatorial data of a finite graph X, and a
function defined on the vertices f : V (X) → R. This can be extended to the edges linearly,
and in this case, we require that no adjacent vertices have the same function value. The
number of edges incident to v that have higher values of f is called its up-degree, and define
the term down-degree symmetrically. We always assume that a vertex of both up- and
down-degree 1 is replaced with the relevant edge; this way, every vertex in the combinatorial
representation of the Reeb graph is a critical point. A vertex v is a local maximum (local
minimum) if it has up-degree 0 (down-degree 0). Likewise, a vertex is an up-split (down-split)
if it has up-degree (down-degree) strictly larger than 1. Note that a vertex can be both an
up-split and a down-split; or an up-split and a local minimum, etc., although this does not
happen for a generic Morse function on a constructible R-space.

In this paper, we will primarily restrict our attention to Reeb graphs with fairly strong
genericity assumptions in order to simplify proofs. Our notion of genericity will involve two
distinct criteria. The first violation of genericity is when we have more than one critical point
at a given function value; if no such pair exists, we say the graph is function-generic. The
second possible violation is if the vertex is of a type not seen in the case of Morse functions
on 2-manifolds. The four kinds of vertices which can appear in this case, with their (down-,
up-) degrees specified, are local minima (0,1); up-forks (1,2); down-forks (2,1); and local
maxima (1,0). If a Reeb graph has only vertices of these four types, it is called Morse-generic.
If a Reeb graph is both function- and Morse-generic, we simply call it generic.

In the case of Morse-generic Reeb graphs, we have a strong characterizations of the critical
points. We say a down-fork v is an ordinary down fork if the two lower branches of v are
contained in different connected components of the open sublevel set R(G)<a := f−1(−∞, a).
Otherwise, we say v is an essential down fork. The ordinary and essential up-forks are defined
in the same way, using the open super-level set R(G)>a := f−1(a, ∞).

2.2 Smoothing and truncated smoothing
We now turn our attention to the (geometric) definition of smoothing given in [16], and the
truncated smoothing given in [10]. Both smoothing and truncated smoothing were studied
in the context of comparing two Reeb graphs, where the focus was on defining distances
between the graphs. Both allow for the definition of an interleaving distance with desirable
theoretical properties [16, 10]. While these distances partially motivate our study, we do not
directly use them, but rather focus on the two operations themselves.

Let (X, f) be a Reeb graph and let ε ≥ 0. Define (f + Id) : X × [−ε, ε] → R by
(x, t) 7→ f(x) + t. We define the ε-smoothing Sε(X, f) to be the Reeb graph of (X ×
[−ε, ε], f + Id); and denote the corresponding quotient map by q : X × [−ε, ε] → Sε(X, f).
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Figure 2 An example of the thickening and smoothing procedure. Given a Reeb graph (left) with
function implied by height, we cross the graph with an interval [−ε, ε], drawn so that the induced
function fε is still visualized by height. Then the smoothed Reeb graph Sε(X, f) is the Reeb graph
of this R-space.

We again slightly abuse notation and refer to f + Id as fε and Sε(X, f) as Sϵ(X) for brevity.
Further, if i : X → X × [−ε, ε] is given by i(x) = (x, 0), we denote the induced map
η := q ◦ i : X → Sε(X, f). That is, η is defined so that the diagram

(X × [−ε, ε], fε)

(X, f) Sε(X, f)

qi

η

commutes. See Fig. 2 for an example.
It is worth noting that smoothing is a functor, with further structure that we will not

utilize in this paper; see [16, 17] for details. We will focus on the combinatorial properties of
smoothing and the η map in our work, and will characterize how a Reeb graph changes under
η as ε varies. We begin with the following lemma that shows η does not change the connected
components; this result is implicitly referenced in prior work [16] but never explicitly proven,
so we include a proof for completeness.

▶ Lemma 2. The induced map π0[η] gives an isomorphism π0(X) ≃ π0(Sε(X, f)).

Proof. Note that because η = q ◦ i, functoriality says that we need only show that π0[q] and
π0[i] are isomorphisms as π0[η] = π0[q] ◦ π0[i].

From Theorem 23.6 of Munkres [25], a finite Cartesian product of connected spaces is
connected. So for each connected component A ⊆ G, A × [−ε, ε] is connected, and thus
π0[i] : π0(X, f) → π0((X) × [−ε, ε]) is an isomorphism.

The map π0[q] : π0(X × [−ε, ε]) → π0(Sε(X, f)) is surjective because by definition of
a quotient map, q is surjective. We next show π0[q] : π0(X × [−ε, ε]) → π0(Sε(X, f)) is
injective. By Munkres Exercise 23.11 [25], since our quotient map q has q−1(y) connected
for every y ∈ Sε(X), then for each connected component A of Sε(X, f), q−1(A) is connected.
This implies that two connected components of X × [−ε, ε] cannot map to the same connected
component of Sε(X, f) under q without a contradiction. Thus π0[q] is injective. ◀

Truncated smoothing is a more recently developed variation of the smoothing functor,
which smooths the input graph and then “chops off" tails in the smoothed graph [10]. More
formally, define a path in the Reeb graph (X, f) to be a map γ : [0, 1] → X. This path is
monotone increasing (resp. decreasing) if f(γ(t)) ≤ f(γ(t′)) (resp. f(γ(t)) ≥ f(γ(t′))) for
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Figure 3 Examples of smoothing and truncating a given (left most) Reeb graph. The sets
Uτ (X, f) and Dτ (X, f) from Sε(X, f) are indicated as dotted lines in the graphs to the right, which
are removed in the truncated graph. The notation Sτ

ε = T τ Sε denotes truncation after smoothing.
Notice that different choices of ε and τ can result in drastically different topology in Sτ

ε (X).

all t ≤ t′. We also call these up- and down-paths, respectively. The height of a monotone
path γ is |f(γ(0)) − f(γ(1))|. Let Uτ (X, f) be the set of points of X that do not have a
height τ up-path and let Dτ be the set of points of X that do not have a height τ down-path.
The truncation of Reeb graph (X, f) is defined by T τ (X, f) = (X, f) \ (Uτ ∪ Dτ ) so that we
keep only the subgraph of (X, f) that consists of the points that have both up-path and
down-path of height τ . For a choice of ε and τ , the truncated smoothing of Reeb graph
(X, f) is defined to be Sτ

ε (X, f) = T τ Sε(X, f). See Fig. 3 for examples.
The truncated smoothing operation inherits many of the useful properties of regular

smoothing, at least for some values of τ relative to ε. First, Sτ
ε is a functor and we have

a map η : (X, f) → Sτ
ε (X, f) for any 0 ≤ τ ≤ ε. Note that we abuse notation and write

η since this map is a restriction of the map η : (X, f) → Sε(X, f). We note also that
π0(Sε(X, f)) ≃ π0(Sτ

ε (X, f)), since it is shown in [10] that if 0 ≤ τ ≤ 2ε and (X, f) is
connected then Sτ

ε (X, f) is connected. If τ is outside of these ranges or if we truncate without
smoothing, it is possible to change the topology of the resulting graph; see Figure 3.

2.3 Persistent Homology
In this section, we give a brief introduction to extended persistent homology. We assume that
the reader is familiar with standard homology, relative homology, and persistent homology
and direct the reader to [25, 23, 27] for further details.

Given a sequence of real values a1 ≤ a2 ≤ · · · ≤ an, a persistence module is a sequence
of vector spaces and linear transformations of the form V := {Va1 → Va2 → · · · → Van}.
Given an interval [b, d) ⊂ R with b, d ∈ {ai}, an interval module I[b,d) = {Ia1 → · · · → Ian

}
is a persistence module where Ia = 0 is the trivial vector space for a ̸∈ [b, d) and Ia = k
is the 1-dimensional vector space otherwise; and the linear maps are isomorphisms when
possible and 0 otherwise. By [31] (see also [27, Thm. 1.9]), any pointwise finite dimensional
persistence module can be written as a direct sum of interval modules V =

⊕
(b,d)∈B I[b,d)

and this representation is unique up to isomorphism.
The structure of a Reeb graph is encoded in the extended persistence diagram [1, 12],

defined as follows. We extend our ordinary persistence module by using the relative homology
of the super level sets. Write Xa = f−1(−∞, a] and Xa = f−1[a, ∞) for the sub- and
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Figure 4 An example Reeb graph, its extended persistence diagram, and vertex pairing.

super-level sets respectively. Note that X = Xan
; Xan is a discrete set consisting of

the points with function value at the global maxima; and Hd(X, Xa1) = 0. Further,
Hd(Xan

) = Hd(X) = Hd(X, ∅), so we have a map Hd(X) → Hd(X, Xan). Thus, we build
the extended persistence module

0 → Hd(Xa1) → · · · → Hd(Xan
) → Hd(X, Xan) → · · · → Hd(X, Xa1) = 0.

We then decompose the resulting persistence module into interval modules. Unlike standard
persistence, we associate an interval to the indices ai and aj for where the interval starts
and ends, while also encoding whether these endpoints happen in the first or second half of
the persistence module by putting them in a different sub-diagram. In a Reeb graph, the
resulting extended persistence diagram can be decomposed into four sub-diagrams [1].

Intervals with both endpoints in the first half of the module are represented by ordinary
persistence points since they correspond to finite-lifetime points which would show up in the
traditional persistence diagram. In the case of a Reeb graph, these only appear in dimension
0, and so we include a point (ai, aj) with i ≤ j in the ordinary sub-diagram, Ord0. The
second type of point, relative persistence points, come from bars in the persistence module
which are contained in the second half of the diagram. In Reeb graphs, these only occur in
dimension 1. We represent an interval lasting from H1(X, Xaj ) → H1(X, Xai) at (aj , ai)
in the relative sub-diagram, Rel1, noting that j ≥ i so these points are always below the
diagonal. The last kind of intervals that appear in the persistence module are those that
begin at Hd(Xai

) and end at Hd(X, Xaj ); we then include a point in the extended sub
diagram Extd at (ai, aj). In this case, we can have either i ≤ j or j ≤ i so points can be
both above and below the diagonal in the diagram. In the case of a Reeb graph, these kind
of intervals can appear in both dimensions 0 and 1, so we have Ext0 with i ≤ j and Ext1
with i ≥ j.

For a Morse-generic Reeb graph, we have a complete pairing of the vertices with respect
to the extended persistence diagram. Each point in the Ext0 diagram corresponds to a
connected component of the Reeb graph, born at the global minimum value and dying at the
global max value. Each point in the Ext1 diagram corresponds to a loop in the Reeb graph,
born at the highest function value vertex in the loop, and dying at the lowest function value
vertex. Note that these are always essential up- and down-forks. Points in Ord0 and Rel1
correspond to pairs of vertices: local minima with ordinary down forks in the first case and
local maxima with ordinary up forks in the second case. See Figure 4 for an example.

If we lose the Morse-generic assumption, this pairing is a bit more subtle. It is possible to
have a vertex in the Reeb graph which contributes to more than one type of persistence point.

CGT
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Figure 5 A visualization of the bottleneck distance between the extended persistence diagrams
of two Reeb graphs. Note that the pairing from the bottleneck distance must match points of the
same type, so even though the solid square and dashed triangle at the bottom right of the diagram
are close, the bottleneck matching cannot pair them together.

For example, an up-split with more than two up-edges will contribute to more than one
persistence point. For this reason we will state our main theorem in the context of generic
Reeb graphs, although with some bookkeeping it can be modified to the case of non-generic
Reeb graphs.

2.4 Bottleneck distance
The bottleneck distance first arose in the context of persistent homology, where it was used
to assess stability in persistence diagrams [11]. Intuitively, this distance between diagrams
considers all pairings of points of the same dimension and type in the two diagrams and
calculates the maximum distance among all matched pairs under the L∞ norm. Note that
points are also allowed to match to the diagonal to compensate for the potential of having a
different number of off-diagonal points in the diagrams under consideration. In a sense, we
can think of this as overlaying the extended persistence diagrams of both graphs and then
matching points either to a point of the same type, or to the diagonal; see Fig. 5.

▶ Definition 3. Let (X, f), (Y, g) be two Reeb graphs. We define the bottleneck distance
db between their extended persistence diagrams D(X, f) and D(Y, g) as

db(D(X, f), D(Y, g)) = inf
m

sup
x∈D(X,f)

||x − m(x)||∞,

where m is a bijection between the multiset of points of D(X, f) and D(Y, g) (including points
on the diagonal), and the bijection must match points of the same type (Ord0(f) to Ord0(g),
Rel1(f) to Rel1(g), etc.)

3 Geometric analysis of smoothing

In this section, we analyze the smoothing operation more carefully and precisely characterize
the behavior of the critical set during the smoothing based on which part of the extended
persistence diagram it contributes to. Geometrically, this implies that smoothing eliminates
cycles whose height is less than 2ε, and that smoothing eventually results in the graph
becoming a forest. The proof of this theorem depends upon a more detailed geometric
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classification of how smoothing affects down- and up-forks. We first need the following
lemma, proven in [16], which specifies properties of how the projection map works during
smoothing.

▶ Lemma 4. [16, Lemma 4.22] Let p : X × [−ε, ε] → X be the projection map onto the
first factor. Then the map p restricts to a homotopy equivalence f−1

ε (I) ≃ f−1(Iε) where Iε

denotes the ε-thickening of the interval I.

This lemma allows us to completely characterize vertices in the smoothed Reeb graph by
looking at inverse images from our original Reeb graph rather than needing to work with the
thickened version, X × [−ε, ε]. In particular, we can investigate Sε(X, f) at function value b

to characterize when there is a vertex at that value, and what its up- and down-degrees are.
For the sake of notation, denote by [b]ε = [b − ε, b + ε] and (b)ε = (b − ε, b + ε) the closed

and open intervals of width 2ε, respectively. Taking the limit of Lem. 4 over intervals (b)δ as
δ → 0, we have that π0f−1

ε (b) ≃ π0f−1([b]ε); this gives the points in Sε(X, f) at the function
value b. Because (X, f) is constructible, for a small enough δ > 0 the points in Sε(X, f)
immediately below are elements of π0f−1([b − δ]ε), while the points immediately above are
elements of π0f−1([b + δ]ε).

To determine which elements of these sets correspond to a vertex (i.e. those for which up
and down degree is not both 1), we can keep track of the attaching maps as follows. First,
note that by assumption, [b]ε and [b]ε+δ intersect the same collection of critical values of
(X, f), thus by constructibility, the map induced by inclusion π0f−1([b]ε) → π0f−1([b]ε+δ) is
an isomorphism. The point of passing to this larger interval is that now [b − δ]ε and [b + δ]ε
are both contained in it, so we have the diagram

π0f−1[b]ε+δ

π0f−1[b − δ]ε π0f−1[b + δ]ε

π0f−1[b]ε.

α β

≃ (1)

In Sε(X, f), the number of points at b is in the bottom set of Eqn. (1), the lower edges at
left, and the upper edges at right. So α and β give attaching information for the lower and
upper edges, respectively. Further, there is a vertex at function value b if α or β (or both) are
not isomorphisms. See Fig. 6 for an example of these interval representations. We will use
this setup repeatedly in the next section to characterize vertices and attaching information
to understand how the vertices move in the smoothed version of the Reeb graph.

3.1 Smoothing Reeb Graphs
Next, we consider how to completely determine the combinatorial structure of Sε(X, f). In
fact, prior work considered this: [16, Corollary 4.25] claims that the set of critical points of
Sε(X, f) = {a ± ε | a ∈ S}, where S is the set of critical points of the Reeb graph (X, f).
In fact, there is some nuance to this issue, as Sε(X, f) is a subset of {a ∈ S | a ± ε}, but
(assuming we reduce vertices of degree 2 and keep only vertices of degree 1 or of degree 3 or
more as critical values) it is never equal to the set {a ∈ S | a ± ε}.

In this paper, we work exclusively with generic Reeb graphs (X, f) and ε values which
keep the graph Sε(X, f) generic as well. However, even with a generic input Reeb graph,
particular choices of ε can result in non-generic Sε(X, f), as smoothing intuitively will move

CGT
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Figure 6 The intervals [b]ε, [b − δ]ε, and [b + δ]ε as well as the dashed interval [b]ε+δ shown in
between a Reeb graph (left) and its smoothing (right); the inverse images in (X, f) are indicated
by dotted lines, and attaching maps α and β as given in Eqn. (1) are the induced maps on the
connected components between the noted intervals.

vertices to new function values where they have the potential to "bump into” other vertices.
Our proof can be adapted to work for non-generic Reeb graphs and the attaching information
described in the last section still completely determines the combinatorial changes; however,
we limit our proof to only generic graphs in order to simplify the case analysis. For a generic
Reeb graph (X, f), we completely characterize the critical set of Sε(X, f) as follows:

▶ Theorem 5. Let (X, f) be a generic Reeb graph with vertex set V (X) = {v1, v2, . . . , vn}.
We denote the critical set S = {a1 < a2 < . . . < an} and assume that the vertices are sorted
so that f(vi) = ai. Let ε > 0 be a value such that 2ε ̸= |ai − aj | for any i, j. Let W ⊆ V (X)
be the subset of vertices where each w ∈ W contributes to a point in Ext1 which has lifetime
at most 2ε. Then there is a bijection Φ : V (X) \ W → V (Sε(X)), and Sε(X, f) is generic.

Proof. We will explicitly construct the map Φ, and show it is a bijection. Given a vertex
v with f(v) = a, we will find a vertex in Sε(X) with either function value a + ε or a − ε

depending on the type of v, and show that this vertex set matching is unique.
First, assume v is a local minimum. Building the diagram of Eq. (1) with b = a − ε with

corresponding maps α and β, we see that the connected component of v in π0f−1[b]ε+δ is
not in the image of α. Thus, there is a vertex w in Sε(X, f) with fε(w) = b, and we define
Φ(v) = w. Further, the above construction gives us that the down-degree of w is zero. Noting
that δ was chosen sufficiently small in Eq. (1) so that there is no additional vertex between
b + ε and b + ε + δ, we also have that β is an isomorphism. Therefore, the up-degree of w is 1,
implying that w is itself a local minimum vertex. We can use the symmetric argument with
b = a + ε in the case where v is a local maximum to find that its connected component is not
in the image of β, and thus there is a local maximum vertex w at height a + ε in Sε(X, f).
We again define Φ(v) = w.

Next, assume that v is a down fork which is not part of an Ext1 pair with lifetime less
than 2ε; i.e. v ̸∈ W . In this case, we start by building Eqn. (1) with b = a − ε. Consider
the two lower edges of v, and the points x and y on these edges at height a − δ. We first
show that x and y are in different connected components of π0f−1([b − δ]ε). If they are in
the same connected component, there is a path in f−1([b − δ]ε) connecting the two points,
let u be the vertex with lowest function value on this path. By choice of δ, we know that
there is no vertex in the interval [b − ε − δ, b − ε), so the height difference between v and u is
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at most 2ε. However, in this case, extended persistence would pair the vertex u with v as an
Ext1 pair which has lifetime at most 2ε. This means v ∈ W , contradicting our assumption.

As we now know that x and y are in two different connected components of f−1([b − δ]ε),
there are two elements of π0f−1([b − δ]ε) whose image under α is the component containing
v. Because there are no vertices of (X, f) in f−1((b + ε, b + δ + ε]) by our choice of δ, there
is a single component in π0f−1([b + δ]ε) mapping to the component of v under β. Thus,
we have a vertex w in Sε(X, f) at height b with down degree 2 and up degree 1. We set
Φ(v) = w. See Fig. 6 for an example. By symmetry, we can use this same argument with
b = a + ε for an up fork vertex, so that for any up fork v in (X, f), there is an up fork w in
Sε(X, f) at height a + ε, and set Φ(v) = w.

Now that Φ has been defined for all required vertices, we show that Φ : V \W → V (Sε(X))
is a bijection. For surjectivity, let u be a vertex in Sε(X) at height b. By assumption on
our Reeb graphs and our case analysis of above, u must have at least one of the up or
down degree not equal to 1 (i.e. 0 or ≥ 2). Assume first that the down degree is 0 and
again construct the diagram of Eqn. (1). Because of vertex u, we must have that there is a
connected component [v] ∈ π0f−1([b]ε) which is not in the image of α; but this is exactly the
requirement for having a local minimum vertex at height b + ε in (X, f), and so Φ(v) = u.
The symmetric argument can be made for local maxima. Similarly, assume u is a vertex
in Sε(G) at height b which has down degree k ≥ 2. Then there are at least two connected
components in f−1[b − δ]ε whose image under α is the component represented by u, and
thus there is a vertex in (X, f) at height b + ε with Φ(v) = u. Again, a symmetric argument
can be used in the case of up-degree at least 2; thus Φ is surjective.

For injectivity, recall that the initial Reeb graph is assumed generic, meaning that we
cannot have two vertices at the same height. If there was a vertex u ∈ Sε(X, f) at height b

and two vertices v, w ∈ (X, f) with Φ(v) = Φ(w) = u, then one must be at height b + ε and
the other at height b−ε; without loss of generality assume these are v and w respectively. But
then our value ε = 2|ai −aj |, where f(v) = ai and f(w) = aj are critical values, contradicting
our assumptions on ε. Thus Φ is a bijection, and Sε(X, f) is generic. ◀

We next show that Φ does not affect the pairing of critical points in the Reeb graph.

▶ Theorem 6. Given a generic Reeb graph, for vertices u, v ∈ V (X, f) \ W which are paired
under extended persistence, Φ(u) and Φ(v) are paired and of the same type in the extended
persistence diagram of Sε(X, f).

Proof. We break this into cases based on the four types of paired points in the extended
persistence diagram. In each case, we assume we have paired vertices of (X, f), u and v. For
notation, we assume f(u) = ai, f(v) = aj , and ai ≤ aj .

From prior work describing extended persistence of Reeb graphs [1, 12, 14] we have a
simple pairing for all the vertices. Namely, the global maximum in any component is paired
with its corresponding global minimum (Ext0 points). A down fork is paired with the highest
up fork that spans a loop with it in the graph, if one exists (Ext1 points). Any remaining
downfork is paired with the higher of the two minima for the two components in its sublevel
set (Ord0 points); similarly any remaining upfork is paired with the lower of the two maxima
of the two components of its superlevel set (Rel1 points).

If the pair is in Ext0, we have a point (ai, aj) in the diagram. Further, u and v are the
global minimum and maximum respectively of a connected component of X. From Theorem 5,
we know that Sε(X, f) has vertices Φ(u) and Φ(v) at height ai − ε and aj + ε. Moreover, any
other critical point b in this component of the original graph has value ai < b < aj , so any
critical point in the related component of Sε(X, f) is between ai − ε and aj + ε. This implies
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Φ(u) and Φ(v) are the global maximum and minimum of a component of the smoothed Reeb
graph, and hence they are paired by extended persistence in Ext0.

If the pair is in Ord0, we have a point (ai, aj) in the diagram, where u is a local minimum,
and v is an ordinary down fork. Let C1 and C2 be the connected components of f−1(−∞, aj)
below v. Let u and u′ be the minimum function value vertices of these two connected
components respectively. Since v is paired with u, this implies that f(u′) < f(u). After
smoothing (X, f) by ε, by Theorem 5 we know that Sε(X, f) has local minimum Φ(u) at the
critical value ai −ε, local minimum Φ(u′) at f(u′)−ε, and downfork Φ(v) at aj −ε. Consider
the connected component(s) below Φ(v) in f̃−1(−∞, aj − ε). Note that by construction, the
Reeb quotient map of the thickened space X × [−ε, ε] maintains connected components, so
π0[q] : π0(q−1(f̃−1(−∞, aj − ε) ≃ π0f̃−1(−∞, aj − ε) gives an isomorphism.

The sets C1 × {−ε} and C2 × {−ε} must be disconnected in q−1(f̃−1(−∞, aj − ε) ⊂
X × [−ε, ε] because C1 and C2 are disconnected in X. Thus, by the isomorphism π0[q],
they must map to different connected components below Φ(v). First, this implies that Φ(v)
must be an essential downfork. Second, we must have Φ(u) and Φ(u′) in these connected
components, and they must be the minimum function value vertices of each of the connected
components. We know that f(Φ(u)) ≥ f(Φ(u′)), so Φ(u) is paired with Φ(v).

The argument for Rel1 is the same as that of Ord0, with super- and sublevel sets switched.
Thus our final case is when u and v are paired in Ext1. We have already shown that all
points in Rel1, Ord0, and Ext0 from X stay paired under Φ, so all that remains is to be sure
Φ(u) and Φ(v) cannot pair with any other points from Ext1. Since u is the highest up fork
that spans a loop with v, there are exactly two connected components in f−1((ai, aj)) which
attach to u and v in X via the inclusion maps into f−1([ai, aj ]). Therefore, by Lemma 4, we
have the commutative diagram

f−1
ε (a + ε, b − ε) f−1(a, b)

f−1
ε [a + ε, b − ε] f−1[a, b]

≃

≃

and thus there are exactly two connected components in f−1
ε ((ai + ε, aj − ε)) which attach

to Φ(u) and Φ(v) in Sε(X, f) via the inclusion maps. Therefore, Φ(u) and Φ(v) will remain
paired in Ext1. ◀

Again, the prior result is only proven here for generic graphs, but the proof can be
adapted to work in non-generic graphs as well. In that case, a vertex of the graph simply
corresponds to multiple critical values, so that any vertex of degree d > 2 in the graph will
appear in d − 2 persistence pairs in the diagram, making the case analysis more complex.

Finally, we arrive at the true main result of this section, where we can use the characteri-
zation of the movement of the critical points to keep track of movement in the persistence
diagram. We note that part of this corollary is also implied in [24], via Propositions 7.1
and 7.4 in that work, where they study the movement of points in the persistence diagrams
of Reeb graphs under smoothing via the construction of formigrams, although without the
geometric analysis that yields our bijection Φ.

▶ Corollary 7. Consider a generic Reeb graph (X, f), a value ε, and the bijection Φ as
in Theorem 5. For every point (a, b) = (f(v), f(u)) in the persistence diagram of (X, f),
the corresponding point (f(Φ(v)), f(Φ(u))) in the persistence diagram of Sε(X, f) is located
(depending on its type) as follows:
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Figure 7 A point (a, b) in the diagram for the Reeb graph (X, f) moves to a point in the diagram
of Sε(X, f) depending on which type of persistence point it represents.

Ext0 (a − ε, b + ε) Rel1 (a + ε, b + ε)

Ord0 (a − ε, b − ε) Ext1

{
(a − ε, b + ε) if a − b > 2ε

removed if a − b ≤ 2ε.

See Fig. 7 for a visual representation of the movement of the points; and Fig. 9 for the
movements of point in a diagram where smoothing without truncation is represented by the
case where τ = 0.

Proof. This proof is bookkeeping to keep track of the types of top and bottom points forming
each pair in the persistence diagram and noting how they move via Thms. 5 and 6. ◀

3.2 Truncating Smoothed Reeb Graphs
We next consider truncated smoothing, and prove an analogous characterization of its impact
on the persistence diagram. We know that β0(X, f) = β0(Sτ

ε (X, f)), since their π0 groups
are isomorphic [10]. We begin by proving an analogous result on π1(Sτ

ε (X, f)).

▶ Lemma 8. For 0 ≤ τ < 2ε, π1[η] : π1(Sτ
ε (X, f)) → π1(Sε(X, f)) is an isomorphism.

Proof. Consider a loop in (X, f) with critical values ai and aj . By Theorem 5, the loop
either disappears under the smoothing functor (if its height is less than ε/2) or is still
present in the smoothed graph (under the bijection Φ). By Prop. 4.3 and Lemma 4.4 of
[10], for τ ≤ 2ε, truncation of the smoothed graph will not reach any essential fork. Hence
each loop maps to a unique loop in the truncated graph, under the natural inclusion from
Sτ

ε (X, f) ↪→ Sε(X, f), and the resulting isomorphism follows since no new loops can be
created under truncation. ◀

The goal of the following proposition is to see how truncation affects the four types of
persistence points (Ext0, Ord0, Rel1 and Ext1) after smoothing, with assumptions to ensure
that truncation does not change the topology of a given graph. See Fig. 8 for a visualization
of the theorem, which constrains the effect of truncated smoothing on the different points of
the persistence diagram.

▶ Proposition 9. Fix 0 ≤ τ ≤ 2ε. Suppose (X, f) is a generic Reeb graph. For every point
(a, b) in the persistence diagram of the Reeb graph, the corresponding point in the persistence
diagram of the truncated smoothed Reeb graph Sτ

ε (X, f) is

Ext0 (a − ε + τ, b + ε − τ) Rel1 (a + ε − τ, b + ε)
Ord0 (a − ε + τ, b − ε) Ext1 (a − ε, b + ε)

if the new point is on the same side of the diagonal as (a, b), and the point is removed
completely if not.
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Figure 8 A point (a, b) in the diagram for the Reeb graph (X, f) moves to a point in the diagram
of Sτ

ε (X, f) depending on which type of persistence point it represents. The red dot again indicates
the behavior of smoothing (when τ = 0), and the orange lines indicate the range of possible values
in the diagram reachable by different values of τ < 2ε.

Proof. By Lemma 8 and our assumptions on X, we know that truncation on the smoothed
graph moves any critical point that is a local minimum up by τ , any local maximum down
by τ , and leaves up- and down-forks unchanged so long as the tail is not removed. The proof
then follows from the same bookkeeping as in Corollary 7, after tracking these new critical
values. ◀

See Fig. 8 for a visualization of the behavior of different types of points in the diagram.
We refer to Fig. 9 for further visualization of how this looks on a full diagram.

4 Inverse problems on Reeb graphs

We are now in a position to make use of this characterization to provide a solution to the
time varying inverse problem in a particular restricted setting. In the most general setting,
our problem can be stated as follows. We assume we are given a path in persistence diagram
space, colloquially known as a vineyard: i.e. a function γ : R≥0 → Pers which is continuous
with respect to the topology induced by the bottleneck distance. We further assume we have
been provided with an initial Reeb graph R0 = (G0, f0). The goal is to find a path in the
space of Reeb graphs Γ : R≥0 → Reeb, continuous with respect to the interleaving distance
[16], for which Γ(0) = R0 and P(Γ(t)) = γ(t).

We restrict our view to essentially creating a notion of piecewise linear paths, defined by
linear interpolation between the path defined at discrete times 0 = t0 < t1 < t2 < t3 · · · . For
the sake of notation, we will denote γ(ti) = Di, and for the Reeb graph path we will construct,
Γ(ti) = Ri = (Gi, fi). Geodesics in persistence diagram space are defined by matchings
arising from the bottleneck distance computation. While a minimum cost matching is not
unique in this setting, say we have a matching Mi : Di → Di+1, then a geodesic between
diagrams Di and Di+1 is given by sliding each point x at constant speed along the line
between x ∈ Di and Mi(x) ∈ Di+1.

Following Prop. 9, we define the map Ψτ
ε : Pers → Pers on diagrams by defining a map

on each point (a, b) ∈ D as follows:

φτ
ε (a, b) =


(a − ε + τ, b + ε − τ) if the type of (a, b) is Ext0 in D

(a − ε + τ, b − ε) if the type of (a, b) is Ord0 in D

(a + ε − τ, b + ε) if the type of (a, b) is Rel1 in D

(a − ε, b + ε) if the type of (a, b) is Ext1 in D.
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Figure 9 Given an initial extended persistence diagram (left), the three diagrams at right are
the resulting diagrams after smoothing by ε and truncating by τ = 0, ε, 2ε respectively. Note that
in this example, for τ = 2ε the point in Ord0 is removed completely since its location on the box
would be on the other side of the diagonal.

Then the map Ψτ
ε is defined by

Ψτ
ε (D) = {φτ

ε (x, y) | (x, y) ∈ D with φτ
ε (x, y) on the same side of the diagonal ∆ as (x, y)}.

We abuse notation and also view this construction as a matching on the points of related
diagrams themselves. Given an ε and τ , all points of the same type (Ord0, Rel1, etc) move
in the same direction. Thus, for a given direction vector v⃗, which depends on ε, τ , and point
type, we can define an updated single-type diagram Dv⃗ by:

Dv⃗ = D + v⃗ := {x + v⃗ | x ∈ D with x and x + v⃗ on the same side of the diagonal}.

Given this updated diagram, we have a matching defined by:

ω : x 7→

{
x + v⃗ if x + v⃗ ∈ Dv⃗

∆ otherwise.
(2)

With this setup, we begin with the following theorem, which proves directly that our truncated
smoothing map in fact is at least locally bottleneck optimal, motivating our use of this
operation for inverse problems.

▶ Theorem 10. For a diagram D with only points of a single type, and v⃗ with magnitude

|v⃗| <
1
2 min

x∈D
y∈D∪∆

x ̸=y

{∥x − y∥∞} ,

the matching induced by ω achieves the bottleneck distance between D and Dv⃗.

Proof. Let φ : D → Dv⃗ be the map sending each off-diagonal point in D to its nearest
neighbor in Dv⃗ under ∥ · ∥∞. We first show that φ(x) must be x + v⃗. By way of contradiction,
assume φ(x) = x′ + v⃗, which implies that ∥x − φ(x)∥ ≤ ∥x − (x + v⃗)∥∞ = ∥v⃗∥. But then

∥x − x′∥ ≤ ∥x − (x′ + v⃗) + v⃗∥ ≤ ∥x − φ(x)∥ + ∥v⃗∥ ≤ 2∥v⃗∥

contradicting the assumption of the theorem. Note that by assumption, no points of D have
been removed in Dv⃗, since the magnitude of v⃗ cannot reach the diagonal. Thus, φ gives a
bijection on the off-diagonal points, and further, has a bottleneck matching score of ∥v⃗∥∞.

If the bottleneck distance between D and Dv⃗ were δ < ∥v⃗∥∞, there would be a matching
sending each point in D to a point at most δ away, but this of course contradicts the nearest
neighbor definition of φ. ◀
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Figure 10 An example of a sequence of admissible diagrams (left) realized by a series of Reeb
graphs with εi and τi shown below.

Next, we turn our attention to when a sequence of diagrams (i.e. a vineyard) is realizable
by Reeb graphs using smoothing and truncation operations.

▶ Definition 11. A sequence of input diagrams {Di}N
i=0 is admissible if for every i, there

exists a pair (εi, τi) with τi < 2εi, such that Di+1 = Ψτi
εi

(Di).

For example, see Fig. 10, where pairs of admissible diagrams are shown. This input
restriction is built to provide a solution to the inverse problem as follows.

▶ Theorem 12. Assume {Di}N
i=0 is admissible and a Reeb graph R0 is given so that P(R0) =

D0. Then there is a sequence of Reeb graphs Ri for which P(Ri) = Di.

Proof. The proof proceeds by induction. For i = 0, and since the Di’s are admissible, by
Proposition 9 we have a pair (ε0, τ0) such that D1 is the diagram of Sτ0

ε0
(R0) i.e Ψτ0

ε0
(D0) = D1.

We can then define the first Reeb graph to be R1 = Sτ0
ε0

(R0), which has the property that
P(R1) = D1 by constructing the truncated smoothing.

Next we for any i ≥ 0, we assume we have a Reeb graph Ri such that P(Ri) = Di, and
wish to build Ri+1 such that P(Ri+1) = Di+1. We proceed in the same manner as the
base case by finding (εi, τi) using the fact that the Di collection is admissible, and setting
Ri+1 = Sτi

εi
(Ri). Then by Proposition 9, P(Ri+1) = Ψτi

εi
(Di) = Di+1. ◀

▶ Corollary 13. Given an admissible sequence of diagrams {Di}N
i=0, we can extend this to a

piecewise linear vineyard given by γ(i + t) = Di + tv⃗i for integer i and t ∈ [0, 1), where v⃗i is
set for the pair Di, Di+1 by the formula in Equation (2) and is distinct by diagram subtype.
Then the path of Reeb graphs Γ(i + t) = Stτi

tεi
(Ri) realizes this path; i.e. P(Γ(i + t)) = γ(i + t).

Proof. This corollary follows from Theorem 12 as follows. First, note that if the pair Di,
Di+1 is admissible when using εi and τi, we get the direction v⃗i for each type of point as in
Eqn. (2). Then, we can linearly interpolate along v⃗i in the diagram to get an intermediate
diagram, and Theorems 5 and 6 tell us there are intermediate values of ε and τ that realize
the smoothing and diagram for any point along the interpolation. ◀
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5 Conclusions and future directions

In this paper, we have provided a complete characterization of the behavior of vertices in a
Reeb graph under the truncation and smoothing operations with respect to their extended
persistence. We showed how this classification can be used to open doors to further utilization
of the smoothing procedure itself. In particular, as we have seen, this characterization can
be translated into simple descriptions of the available paths in extended persistence diagram
space under these transformations, yielding tractable solutions to (an admittedly rather
restricted version of) inverse problems in topological data analysis.

This work suggests many possible future directions to study. While we have only dealt
with piecewise linear vineyards in this work, it seems likely that there will be ways to loosen
our restrictions in Theorem 12. Our analysis of smoothing suggests many possible relaxations,
where for example different sections of the Reeb graphs are smoothed and truncated (or even
“untruncated” and “unsmoothed”) by varying amounts or where more relaxed constraints on
admissible could yield approximate solutions to the inverse problem. This broader framework
of piecewise linear paths would be interesting if it can be used to approximate more general
vineyards, yielding the potential for approximate solutions of a more general inverse problem.
In addition, while we have chosen to analyze using the bottleneck distance in Theorem 10,
there are many other metrics on both Reeb graphs and persistence diagrams to consider,
which we conjecture may also be locally optimal.
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