
Aspect Ratio Universal Rectangular Layouts
Stefan Felsner #

Institut für Mathematik, Technische Universität Berlin, Berlin, Germany

Andrew Nathenson #

University of California, San Diego, CA, USA

Csaba D. Tóth #

Department of Mathematics, California State University Northridge, Los Angeles, CA; and
Department of Computer Science, Tufts University, Medford, MA, USA

Abstract
A generic rectangular layout (for short, layout) is a subdivision of an axis-aligned rectangle into
axis-aligned rectangles, no four of which have a point in common. Such layouts are used in
data visualization and in cartography. The contacts between the rectangles represent semantic or
geographic relations. A layout is weakly (strongly) aspect ratio universal if any assignment of aspect
ratios to rectangles can be realized by a weakly (strongly) equivalent layout. We give combinatorial
characterizations for weakly and strongly aspect ratio universal layouts. Furthermore, we describe a
quadratic-time algorithm that decides whether a given graph is the dual graph of a strongly aspect
ratio universal layout, and finds such a layout if one exists.

Keywords and phrases rectangular layouts, contact graphs, universality

Digital Object Identifier 10.57717/cgt.v3i1.37

Related Version A preliminary version of this paper appeared in the Proceedings of the 16th Interna-
tional Conference and Workshops on Algorithms and Computation (WALCOM 2022), LNCS 13174,
pp. 73–84, doi:10.1007/978-3-030-96731-4_7.

Funding Stefan Felsner : Partially supported by grant DFG FE 340/13-1.
Csaba D. Tóth: Research partially supported by the NSF award DMS-1800734.

Acknowledgements We thank the anonymous reviewers for many helpful comments and suggestions
that helped improve the presentation of this paper.

1 Introduction

A rectangular layout (for short, layout) is a subdivision of an axis-aligned rectangle into
axis-aligned rectangular faces; it is also known as mosaic floorplan or rectangulation. A
layout is generic if no four faces have a point in common; see Fig. 1. In this paper all
layouts are generic unless stated otherwise. In the dual graph G(L) of a layout L, the nodes
correspond to rectangular faces, and an edge corresponds to a pair of faces that share a
boundary segment of positive length [6, 29, 30].

(a) (b) (c) (d)

r7

r4

r1

r3
r6

r8

r2

r5

v7

v4

v1

v3

v6

v8

v2

v5

r7

r4

r1
r3
r2

r5
r6

r8

v7

v4

v1

v3

v6

v8

v2

v5

Figure 1 (a–b) A layout and its dual graph. (c–d) A sliceable layout and its dual graph. The
two layouts are neither strongly nor weakly equivalent, but their dual graphs are isomorphic.

© Stefan Felsner, Andrew Nathenson, and Csaba D. Tóth
licensed under Creative Commons License CC-BY 4.0

Computing in Geometry and Topology: Volume 3(1); Article 3; pp. 3:1–3:24

mailto:felsner@math.tu-berlin.de
mailto:anathenson@ucsd.edu
mailto:csaba.toth@csun.edu
https://doi.org/10.57717/cgt.v3i1.37
http://dx.doi.org/10.1007/978-3-030-96731-4_7
https://creativecommons.org/licenses/by/4.0/
https://www.cgt-journal.org/

3:2 Aspect Ratio Universal Rectangular Layouts

Two layouts are strongly equivalent if they have isomorphic dual graphs, and the cor-
responding line segments between adjacent faces have the same orientation (horizontal or
vertical). Two layouts are weakly equivalent if there are bijections between their maximal
horizontal line segments as well as between their maximal vertical line segments, and the
contact graphs of all segments are isomorphic plane graphs. Strong equivalence implies
weak equivalence [9], but weak equivalence does not imply strong equivalence; see Fig. 2
for examples. The closures of weak (resp., strong) equivalence classes under the Hausdorff
distance1 extend to nongeneric layouts, and a nongeneric layout may belong to the closures
of multiple equivalence classes.

(a) (b) (d)

r7

r4

r1
r3

r6
r8

r5
r2

r7

r4

r1

r3
r6

r8

r2

r5

(c)

r7

r4

r1
r3

r6
r8

r2

r5

r7

r4

r1

r3

r6
r8

r2

r5

Figure 2 (a–c) Three generic layouts that are weakly equivalent. The layouts in (a) and (b) are
strongly equivalent, but not strongly equivalent to the layout in (c), as the adjacencies between the
pairs of rectangles {r3, r6} and {r4, r5} are different. (d) A nongeneric layout that is in the closure
of the strong equivalence classes of the layouts in (a–b) and (c).

Rectangular layouts have been studied for more than 40 years, originally motivated by
VLSI design [22, 24, 36] and cartography [27], and more recently by data visualization [18].
The weak equivalence classes of layouts are in bijection with Baxter permutations [1, 28, 37].

A graph is called a proper graph if it is the dual graph of a generic layout. Every proper
graph is a near-triangulation (a plane graph where every bounded face is a triangle, but the
outer face need not be a triangle). But not every near-triangulation is a proper graph [29, 30].
Ungar [34] gave a combinatorial characterization of proper graphs (see also [17, 32]): A
near-triangulation is a proper graph if and only if it can be augmented by four vertices into
a near-triangulation in which the outer face is a quadrilateral formed by the new vertices,
and there are no separating triangles. Using this characterization, proper graphs can be
recognized in linear time [12, 23, 25, 26].

In data visualization and cartography [18, 27], the rectangular faces correspond to entities
(e.g., countries or geographic regions); adjacency between rectangles represents semantic or
geographic relations, and the “shape” (e.g., area, width, height, aspect ratio, in-radius, etc.)
of a rectangular face represents data associated with the entity. It is often desirable to use
equivalent layouts to realize different statistics associated with the same entities. A generic
layout L is weakly (strongly) area universal if any area assignment to the rectangles can be
realized by a layout weakly (strongly) equivalent to L. Wimer et al. [36] showed that every
generic layout is weakly area universal (see also [9, Thm. 3]). Eppstein et al. [6] proved that
a layout is strongly area universal if and only if it is one-sided (defined below). However, no
polynomial-time algorithm is known for testing whether a given graph G is the dual graph of
some area-universal layout.

1 The distance between layouts L1 and L2 is the Hausdorff distance between the sets S(L1) and S(L2),
where S(Li) is the union of all segments in Li for i ∈ {1, 2}.

S. Felsner et al. 3:3

Aspect ratio universal layouts. The aspect ratio of an axis-aligned rectangle r = [a, b]× [c, d]
is height(r)/width(r) = (d− c)/(b− a). In some applications, the aspect ratios (rather than
the areas) of the rectangles are specified. For example, in word clouds adapted to multiple
languages, the aspect ratio of (the bounding box of) each word depends on the particular
language. A generic layout L is weakly (strongly) aspect ratio universal (ARU, for short) if
any assignment of aspect ratios to the rectangles can be realized by a layout that is weakly
(strongly) equivalent to L.

In this paper, we give a combinatorial characterization for weakly and strongly ARU
layouts, and design an algorithm to recognize strongly ARU layouts. Our results are stated
in Section 1.2.

1.1 Background and terminology
Before we can state our results, we review some additional key definitions for layouts. A
rectilinear graph is a plane straight-line graph in which every edge is horizontal or vertical.
A rectangular layout (for short, layout) is a rectilinear graph in which the boundary of every
face (including the outer face) is a rectangle; it is generic if the maximum vertex degree is at
most three. A sublayout of a layout L is a subgraph of L which is a layout. A sublayout L′

of L is trivial if L′ = L or L′ is the boundary of a single face of L. A layout L is irreducible
if it does not have any nontrivial sublayout. A rectangular arrangement is a 2-connected
plane straight-line graph in which every bounded face is a rectangle (however, the outer face
need not be a rectangle); see Fig. 3 for examples.

(a) (b) (d)(c)

Figure 3 (a) A layout L, the red maximal segments are not one-sided. (b) Three sublayouts of L,
one of which is trivial. (c) An irreducible layout. (d) A rectangular arrangement.

One-Sided layouts. A segment of a layout L is a path of collinear inner edges of L. A
segment of L that is not contained in any other segment is maximal. A layout L is one-sided
if every maximal segment is a side of at least one rectangular face of L; that is, for every
maximal segment s, all other segments with an endpoint in the interior of s lie in the same
halfplane bounded by s. For example, the layouts in Fig. 3a and 3c are not one-sided (due
to the red maximal segments).

Sliceable layouts. A slice in a layout L is a maximal segment with both endpoints incident
to the outer face, and subdivides L into two sublayouts. A sliceable layout (also known
as slicing floorplan or guillotine rectangulation) is one that can be decomposed into trivial
layouts through recursive subdivision with slices; see Fig 1(c) for an example. The recursive
subdivision of a layout L can be represented by a binary space partition tree (BSP-tree),
which is a binary tree where each vertex is associated with a sublayout, which is L if the
vertex is the root and a rectangular face of L if the vertex is a leaf [5]. For a nonleaf vertex,

CGT

3:4 Aspect Ratio Universal Rectangular Layouts

the tree additionally stores a slice; and two sublayouts on each side of the slice are associated
with the two children. The root slice is between two opposite sides of the bounding box.

The number of (strong equivalence classes of) sliceable layouts with n rectangular faces is
known to be the nth Schröder number [37]. One-sided sliceable layouts are in bijection with
certain pattern-avoiding permutations, closed formulas for their number have been given by
Asinowski and Mansour [2]; see also [21] and OEIS A078482 in the on-line encyclopedia of
integer sequences for further references.

A windmill in a layout is a set of four pairwise noncrossing maximal segments, called
arms, which contain the sides of a central rectangle and each arm has an endpoint on the
interior of another (e.g., the maximal segments around the rectangular face r3 or r6 in
Fig. 4a). A windmill is either clockwise or counterclockwise, depending on the orientation of
the boundary of the central rectangle when we orient each arm from the central rectangle to
the other endpoint (see Figs. 6e–6f). It is well known that a layout is sliceable if and only if
it does not contain a windmill [1].

Transversal structure. The dual graph G(L) of a layout L encodes adjacencies between
faces, but does not specify the relative positions between faces (above-below or left-right).
The transversal structure (also known as regular edge-labelling) was introduced by He [13, 15]
for the efficient recognition of proper graphs, and later used extensively for counting and
enumerating (equivalence classes of) layouts. Fusy [10, Section 2] distinguishes between several
equivalent variants of the transversal structure, we refer to the variant called transversal
edge-partition by Fusy [10].

We first define the extended dual graph G∗(L) of a layout L, as the contact graph of the
rectangular faces and the four edges of the bounding box of L; it is a triangulation in an
outer 4-cycle without separating triangles; see Fig. 4.

(a) (c)

r7

r4

r1
r3

r6
r8

r5
r2

r5

e1

e2

e3

e4

(b)

Figure 4 (a) A layout L bounded by edges e1, . . . , e4. (b) Extended dual graph G∗(L) with an
outer 4-cycle (e1, . . . , e4). (c) A transversal structure.

The transversal structure of a layout L comprises G∗(L) and a bicoloring of the inner
edges of G∗(L), where red (resp., blue) edges correspond to above-below (resp., left-right)
relation between two objects in contact. An (abstract) transversal structure is defined as a
graph G∗, which is a triangulation of an outer 4-cycle (S, W, N, E) that has no separating
triangles, together with a bicoloring of the inner edges of G∗ such that all the inner edges
incident to S, W , N , and E are red, blue, red, and blue, respectively; and at each inner vertex
the counterclockwise rotation of incident edges consists of four nonempty blocks of red, blue,
red, and blue edges; see Fig. 4c. The transversal structure determines a unique orientation
of the edges [10, Proposition 2], where red (resp., blue) edges are directed bottom-up (resp.,
left-to-right), as indicated in Fig. 4c. It is known that transversal structures are in bijection

https://oeis.org/A078482

S. Felsner et al. 3:5

with the strong equivalence classes of generic layouts [8, 10, 15].

a a
a

ab b b b

c c c
cd d d d

Figure 5 A flip of an empty (left) and a nonempty (right) alternating cycle.

Flips and alternating 4-cycles. A sequence of flip operations can transform any transversal
structure with n inner vertices into any other [7, 10]. Each flip considers an alternating
4-cycle C, which comprises red and blue edges alternatingly, and changes the color of every
edge in the interior of C; see Fig. 5. If, in particular, there is no vertex in the interior of C,
then the flip changes the color of the inner diagonal of C. Furthermore, every flip operation
yields a valid transversal structure on G∗(L), hence a new generic layout L′ that is strongly
nonequivalent to L. We can now establish a relation between geometric and combinatorial
properties.

▶ Lemma 1. A layout L is one-sided and sliceable if and only if G∗(L) admits a unique
transversal structure.

Proof. Assume that L is a layout where G∗(L) admits two or more transversal structures.
Consider a transversal structure of G∗(L). Since any two transversal structures are connected
by a sequence of flips, there exists an alternating 4-cycle. Any alternating 4-cycle with no
interior vertex corresponds to a segment in L that is not one-sided. Any alternating 4-cycle
with interior vertices corresponds to a windmill in L. Consequently, L is not one-sided or
not sliceable.

Conversely, if L is not one-sided (resp., sliceable), then the transversal structure of
G∗(L) contains an alternating 4-cycle with no interior vertex (resp., with interior vertices).
Consequently, we can perform a flip operation, and obtain another transversal structure for
G∗(L). ◀

1.2 Our results
We characterize strongly and weakly aspect ratio universal layouts.

▶ Theorem 2. A generic layout is weakly aspect ratio universal if and only if it is sliceable.

▶ Theorem 3. For a generic layout L, the following properties are equivalent:
(i) L is strongly aspect ratio universal;

(ii) L is one-sided and sliceable;
(iii) the extended dual graph G∗(L) of L admits a unique transversal structure.

It is not difficult to show that one-sided sliceable layouts are strongly aspect ratio universal;
and admit a unique transversal structure. Proving the converses, however, is more involved.

Algorithmic results. In some applications, the rectangular layout is not specified, and we
are only given the dual graph of a layout (i.e., a proper graph). This raises the following
problem: Given a (proper) graph G, find a strongly (resp., weakly) ARU layout L such that
G is isomorphic to the dual graph of L (i.e., G ≃ G(L)) or report that no such layout exists.

CGT

3:6 Aspect Ratio Universal Rectangular Layouts

Using structural properties of one-sided sliceable layouts that we develop here, we present an
algorithm for recognizing the dual graphs of strongly ARU layouts.

▶ Theorem 4. We can decide in O(n2) time whether a given graph G with n vertices is the
dual of a one-sided sliceable layout.

Currently, no polynomial-time algorithm is known for recognizing dual graphs of sliceable
layouts [4, 19, 38] (which are weakly ARU layouts by Theorem 2); or one-sided layouts [6].
Previously, Thomassen [32] gave a linear-time algorithm to recognize proper graphs if the
nodes corresponding to corner rectangles are specified, using combinatorial characterizations
of layouts [34]. Kant and He [13, 15] described a linear-time algorithm to test whether a
given graph G∗ is the extended dual graph of a layout, using transversal structures. Later,
Rahman et al. [12, 23, 25, 26] showed that proper graphs can be recognized in linear time
(without specifying the corners). However, a proper graph may have exponentially many
(strongly or weakly) nonequivalent realizations, and none of the prior algorithms guarantees
to find a one-sided sliceable realization if one exists.

Organization. We characterize strongly and weakly ARU layouts and prove Theorems 2–3
in Section 2. We establish structural properties of the dual graphs of one-sided sliceable
layouts in Subsection 3.1, and use them in the analysis of a quadratic-time algorithm that
recognizes such graphs in Subsection 3.2. We conclude in Section 4 with open problems
and one more structural property: We show that the dual graph of every one-sided sliceable
layout has a vertex cut of size at most 3 (Proposition 23).

2 Aspect ratio universality

An aspect ratio assignment to a layout L is a function α that maps a positive real to each
rectanglular face in L. A strong (resp., weak) realization of an aspect ratio assignment α

to L is a layout L′ that is strongly (resp., weakly) equivalent to L with the required aspect
ratios. If such a realization exists, then the aspect ratio assignment α is strongly (resp.,
weakly) realizable. A layout is strongly (resp., weakly) aspect ratio universal (ARU) if every
aspect ratio assignment is strongly (resp., weakly) realizable. In this section, we characterize
strongly and weakly ARU layouts (Theorems 2 and 3). We start with two easy observations
about one-sided and sliceable layouts.

▶ Lemma 5. Let L be a layout with an aspect ratio assignment α. Then every strong
realization is a weak realization. Furthermore, if L is one-sided, then every weak realization
is a strong realization.

Proof. The first statement follows from the fact that strong equivalence implies weak
equivalence. For the second statement, note that in a one-sided layout, each maximal
segment s is a side of a rectangular face, and so s is on the boundary between the same pairs
of rectangular faces in every weak realization of α. Consequently, all weak realizations of α

generate the same dual graph, hence they are all strongly equivalent to L, and so they are
strong realizations of α. ◀

▶ Lemma 6. Every aspect ratio assignment for a sliceable layout has a unique weak realization
up to scaling and translation. Furthermore, for every ϱ > 0 there exists a weakly realizable
aspect ratio assignment α such that the bounding box of the unique realization of α has aspect
ratio ϱ.

S. Felsner et al. 3:7

Proof. To prove the first claim, let α be an aspect ratio assignment to a sliceable layout L.
Note that the restriction of α to a sublayout L′ of L is an aspect ratio assignment for L′.
We proceed by induction on k, the height of the BSP-tree representing L.

In the basis step, a layout of height 0 comprises a layout with a single rectangular face,
which is uniquely determined by its aspect ratio assignment up to scaling and translation.
For the induction step, assume that every sublayout at height k in the BSP-tree admits a
unique weak realization in which all rectangular faces (at the leaves of the BSP-tree) have
the required aspect ratios. A sublayout L0 at height k + 1 of the BSP-tree is composed of
two sublayouts at height k, say L1 and L2, that share an edge. Given a weak realization
of L1, there is a unique scaling and translation that attaches L2 to L1, and identifies their
matching boundary segments. This yields a unique weak realization of the sublayout L at
level k + 1, up to scaling and translation.

The second claim follows trivially: Start with a bounding box of aspect ratio ϱ, subdivide
it recursively into a layout equivalent to L (but otherwise arbitrarily), and define an aspect
ratio assignment using the aspect ratios of the resulting leaf rectangles. ◀

By the definition of weak ARU, Lemma 6 readily implies the following.

▶ Corollary 7. If L is sliceable, then it is weakly ARU.

The combination of Lemmata 5 and 6 yields the following for one-sided sliceable layouts.

▶ Corollary 8. If L is one-sided and sliceable, then it is strongly ARU.

2.1 Sliceable and One-Sided Layouts
Next we show that any sliceable layout that is strongly ARU must be one-sided. We present
two types of elementary layouts that are not strongly ARU, and then show that all other
layouts that are not one-sided or not sliceable can be reduced to these prototypes. A brick
layout is a sliceable layout whose BSP-tree is a complete binary tree with four leaves, and the
slices at consecutive levels are orthogonal; see Figs. 6a–6d. A windmill layout is generated
by the four arms of a (clockwise or counterclockwise) windmill, where each arm extends to
the outer boundary; see Figs. 6e–6f.

r2

r3

r4

r1

(a)

r3

r4

r1

r2

(b)

r3

r2

r4

r1

(c)

r1

r4

r2

r3

(d)

r3

r1

r4

r2
c

(e)

r3

r1

r4

r2

c

(f)

Figure 6 Layouts that are not aspect ratio universal: (a)–(d) brick layouts are sliceable but not
one-sided; (e)–(f) windmill layouts are one-sided but not sliceable.

▶ Lemma 9. The brick layouts in Figs. 6a–6d are not strongly ARU; the windmill layouts
in Figs. 6e–6f are neither strongly nor weakly ARU.

Proof. Suppose, for a contradiction, that a brick layout is strongly ARU. We may assume, by
symmetry, that the brick layout L0 in Fig. 6a is strongly ARU. Then there exists a strongly
equivalent layout L for the aspect ratio assignment α(r2) = α(r3) = 1 and α(r1) = α(r4) = 2.
Since the same horizontal slice is a side of both r1 and r2, then width(r1) = width(r2).
Combined with α(r1) = 2α(r2), this yields height(r1) = 2 height(r2), and so the left horizontal

CGT

3:8 Aspect Ratio Universal Rectangular Layouts

slice is below the barycenter of r1 ∪ r2. Similarly, width(r3) = width(r4) and α(r4) = 2α(r3)
imply that the right horizontal slice is above the barycenter of r3 ∪ r4. Since barycenter of
r1∪r2 and r3∪r4 have the same y-coordinate, then r1 and r4 are in contact in the realization
L, which is not strongly equivalent to L0: a contradiction.

Suppose that a windmill layout is weakly ARU. We may assume, by symmetry, that the
windmill layout L1 in Fig. 6e is weakly ARU. Then there exists a weakly equivalent layout L
for the aspect ratio assignment α(c) = α(r1) = α(r2) = α(r3) = α(r4) = 1. In particular,
r1, . . . , r4 are squares; denote their side lengths by si, for i = 1, . . . , 4. Note that one side of
ri strictly contains a side of ri−1 for i = 1, . . . , 4 (with arithmetic modulo 4). Consequently,
s1 < s2 < s3 < s4 < s1, which is a contradiction. ◀

▶ Lemma 10. If a layout is sliceable but not one-sided, then it is not strongly ARU.

Proof. Let L be a sliceable but not one-sided layout. It suffices to show that any of its
sublayouts are not strongly ARU, because any nonrealizable aspect ratio assignment for a
sublayout can be expanded arbitrarily to an aspect ratio assignment for the entire layout.

We claim that L contains a sublayout strongly equivalent to a brick layout in Figs. 6a–6d.
As L is not one-sided, it contains a maximal segment ℓ which is not the side of any rectangular
face. We may assume, without loss of generality, that ℓ is vertical. Since L is sliceable, every
maximal segment is a slice of a sublayout that subdivides it into two smaller sublayouts.
However, ℓ is not the side of any rectangular face, consequently the two smaller sublayouts
on the left and right of ℓ must be subdivided horizontally in the recursion. Let ℓleft and ℓright
be the first maximal horizontal segments on the left and right of ℓ, respectively. Assume
that they each subdivide a sublayout adjacent to ℓ into r1 and r2 (on the left) and r3 and r4
(on the right). The bounding boxes of the sublayouts r1, . . . , r4 comprise a layout equivalent
to a brick layout in Figs. 6a–6d. By Lemma 9, there exists an aspect ratio assignment to L
not realizable by a strongly equivalent layout. ◀

c
ℓ1

ℓ2

ℓ3

ℓ4

Q2 Q1

Q3 Q4

(a) A nonsliceable layout, a windmill, where rays
ℓ1, . . . , ℓ4 define four quadrants Q1, . . . , Q4.

c

P1

P2

P3

P4

(b) A weakly equivalent layout, where four paths
define rectangular arrangements.

Figure 7 The rays ℓ1, . . . , ℓ4 deform into monotone paths in a weakly equivalent layout.

As noted above, every nonsliceable layout contains a windmill [1]. In the remainder
of this section we strengthen this claim, and show that every nonsliceable layout contains
a windmill together with pairwise disjoint x- or y-monotone paths to some points in the
interiors of distinct sides of the bounding box. In a nutshell, our proof goes as follows:
Consider an arbitrary windmill in a nonslicable layout L. We subdivide the exterior of the
windmill into four quadrants, by extending the arms of the windmill into rays ℓ1, . . . , ℓ4 to
the bounding box; see Fig. 7a. Each rectangular face of L lies in a quadrant or in the union
of two consecutive quadrants. We assign aspect ratios to each rectangular face based on

S. Felsner et al. 3:9

which quadrant(s) it lies in. If these aspect ratios can be realized by a layout L′ that is
weakly equivalent to L, then the rays ℓ1, . . . , ℓ4 will be “deformed” into x- or y-monotone
paths that subdivide L′ into a sublayout in the center of the windmill and four rectangular
arrangements, each incident to a unique corner of the bounding box; as in Fig. 7b. We assign
the aspect ratios for rectangular faces in L′ so that these arrangements can play the same
role as the rectangles r1, . . . , r4 in a windmill layout in Figs. 6e–6f. We continue with the
details.

We clarify what we mean by a “deformation” of a (horizontal) ray ℓ; see Fig. 7.

▶ Lemma 11. Let a ray ℓ be the extension of a horizontal segment in a layout L such that ℓ

does not contain any other segment and it intersects the rectangular faces r1, . . . , rk in this
order. Suppose that L′ is weakly equivalent to L, and the corresponding faces r′

1, . . . , r′
k of L′

are sliced by horizontal segments s1, . . . , sk, respectively. Then there exists an x-monotone
path comprised of horizontal edges s1, . . . , sk, and vertical edges along vertical segments of
the layout L′.

Proof. Assume, without loss of generality, that the ray ℓ points to the right. Since ℓ does
not contain any other segment and it intersects the rectangular faces r1, . . . , rk in this order,
then ri and ri+1 are on opposite sides of a vertical segment for i = 1, . . . , k − 1. As L′ is
weakly equivalent to L, then r′

i and r′
i+1 are on opposite sides of a vertical segment for

i = 1, . . . , k − 1; see [9]. In particular, the right endpoint of si and the left endpoint of
si+1 are on the same vertical segment in L′, for all i = 1, . . . k − 1. These vertical segments,
together with s1, . . . , sk form an x-monotone path, as required. ◀

The next lemma allows us to estimate the aspect ratio of the bounding box of a rectangular
arrangement in terms of the aspect ratios of individual rectangles.

▶ Lemma 12. If every rectangle in a rectangular arrangement has aspect ratio αm, where
α > 0 and m is the number of rectangles in the arrangement, then the aspect ratio of the
bounding box of the arrangement is at least α and at most αm2.

Proof. Consider a rectangular arrangement A with m rectangles and a bounding box R. Let
w be the maximum width of a rectangle in A. This implies width(R) ≤ mw. Each rectangle
of width w in the arrangement has height αmw, and so height(R) ≥ αmw. The aspect ratio
of R is height(R)/width(R) ≥ (αmw)/(mw) = α.

Similarly, let h be the maximum height of a rectangle in A. Then height(R) ≤ mh. Any
rectangle of height h in the arrangement A has width h

αm , and so width(R) ≥ h
αm . The

aspect ratio of R is height(R)/width(R) ≤ mh/(h
αm) = αm2, as claimed. ◀

We can now complete the characterization of aspect ratio universal layouts.

▶ Lemma 13. If a layout L is not sliceable, it is not weakly ARU.

Proof. We proceed by induction on the number n of rectangles in L. In the basis step, we
assume that L is irreducible. In particular, L contains no slices, as any slice would create two
nontrivial sublayouts. Every nonsliceable layout contains a windmill. Consider an arbitrary
windmill in L, assume without loss of generality that it is clockwise and let c be its central
rectangle (see Fig. 7a). Note that c is a rectangular face in L, since L is irreducible. Denote
by R the bounding box of L. By extending the arms of the windmill into rays, ℓ1, . . . , ℓ4, we
subdivide R \ c into four quadrants, denoted by Q1, . . . , Q4 in counterclockwise order starting
with the top-right quadrant.

CGT

3:10 Aspect Ratio Universal Rectangular Layouts

Note that the interior of any rectangular face of L intersects at most two rays. Indeed,
any two points on two different rays, say pi ∈ ℓi and pj ∈ ℓj , span a closed axis-parallel
rectangle a(pi, pj) that intersects (the closure of) the central rectangle c. Now suppose that
both pi and pj are in the interior of some rectangular face r ⊂ R \ c of L, then a(pi, pj) also
lies in the interior of r, and so c would intersect the interior of a rectangular face r ⊂ R \ c,
which is a contradiction. It follows that every face of L in R \ c lies either in one quadrant or
in the union of two consecutive quadrants.

We define an aspect ratio assignment α as follows: Let α(c) = 1. If r ⊆ Q1 or r ⊆ Q3, let
α(r) = 6n; and if r ⊆ Q2 or r ⊆ Q4, let α(r) = (6n2)−1. For a rectangle r split by a ray, we set
α(r) = 6n + (6n2)−1 if r is split by the horizontal ray ℓ1 or ℓ3; and α(r) = ((6n)−1 + (6n2))−1

if split by the vertical ray ℓ2 or ℓ4.
Suppose that some layout L′ weakly equivalent to L realizes α. Split every rectangle

of aspect ratio 6n + (6n2)−1 in L′ horizontally into two rectangles of aspect ratios 6n and
(6n2)−1. Similarly, split every rectangle of aspect ratio ((6n)−1 + (6n2))−1 vertically into two
rectangles of aspect ratios 6n and (6n2)−1; see Fig. 7b. By Lemma 11, there are four x- or
y-monotone paths P1, . . . , P4 from the four arms of the windwill to four distinct sides of the
bounding box that pass through the splitting segments. The paths P1, . . . , P4 subdivide the
exterior of the windmill into four rectangular arrangements that we denote by A1, . . . , A4,
and that each contain a unique corner of the bounding box. By construction, every rectangle
in A1 and A3 has aspect ratio 6n, and every rectangle in A2 and A4 has aspect ratio (6n2)−1.

Let R1, . . . , R4 be the bounding boxes of A1, . . . , A4, respectively. By Lemma 12, both
R1 and R3 have aspect ratios at least 6, and both R2 and R4 have aspect ratios at most
1
6 . By construction, the rectangular arrangements A1, . . . , A4 each contain an arm of
the windmill. This implies that width(c) < min{width(R1), width(R3)} and height(c) <

min{height(R2), height(R4)}. Consider the rectangular arrangement comprised of A1, c, and
A3. It contains two opposite corners of R, and so its bounding box is R. Furthermore,
height(R) ≥ max{height(R1), height(R3)}, and

width(R) ≤ width(R1) + width(c) + width(R3)
< 3 max{width(R1), width(R3)}

≤ 3 max
{

height(R1)
6 ,

height(R3)
6

}
= max{height(R1), height(R3)}

2 ,

and so the aspect ratio of R is at least 2. Similarly, the bounding box of the rectangular
arrangement comprised of A2, c, and A3 is also R, and an analogous argument implies that
its aspect ratio must be at most 1

2 . We have shown that the aspect ratio of R is at least 2
and at most 1

2 , a contradiction. Thus the aspect ratio assignment α is not realizable, and so
L is not weakly aspect ratio universal.

Induction step. Assume that L has a nontrivial sublayout. We distinguish between two
cases:
Case 1: L has a nontrivial irreducible sublayout. Let L∗ be a minimum nontrivial
irreducible sublayout sublayout of L. By induction, L∗ admits an aspect ratio assignment
α∗ that is not weakly realizable. Augment α∗ arbitrarily to an aspect ratio assignment α

for L. A weak realization of α on L would include a weak realization of α∗ on L∗, which is
impossible, so L is not weakly ARU.
Case 2: all nontrivial sublayouts of L are sliceable. Then we can replace each maximal
sublayout L∗ of L with a rectangle r∗ to obtain an irreducible layout L′. By induction, there
is an aspect ratio assignment α′ for L′ that is not realizable. By Lemma 6 there is a suitable

S. Felsner et al. 3:11

aspect ratio assignment α∗ to each sliceable sublayout L∗ such that the bounding box of its
unique weak realization has the required aspect ratio α′(r∗). Thus the combination of α′ and
the assignment α∗ yields an aspect ratio assignment for L that is not weakly realizable. ◀

We are now ready to prove Theorems 2 and 3. We restate both theorems for clarity.

▶ Theorem 2. A generic layout is weakly aspect ratio universal if and only if it is sliceable.

Proof. Let L be a generic layout. If L is sliceable, then it is weakly ARU by Corollary 7.
Otherwise, it is not weakly ARU by Lemma 13. ◀

▶ Theorem 3. For a generic layout L, the following properties are equivalent:
(i) L is strongly aspect ratio universal;

(ii) L is one-sided and sliceable;
(iii) the extended dual graph G∗(L) of L admits a unique transversal structure.

Proof. Properties (ii) and (iii) are equivalent by Lemma 1. Property (ii) implies (i) by
Corollary 8. For the converse, we prove the contrapositive. Let L be a layout that is not
one-sided or not sliceable. If L is not sliceable, then it is not weakly ARU by Lemma 13,
hence not strongly ARU, either. Otherwise L is sliceable but not one-sided, and then L is
not strongly ARU by Lemma 10. ◀

2.2 Unique transversal structure
Subdividing a square into squares has fascinated humanity for ages [3, 14, 33]. For example,
a perfect square tiling is a tiling with squares with distinct integer side lengths. Schramm [31]
(see also [20, Chap. 6]) proved that every near-triangulation with an outer 4-cycle is the
extended dual graph of a (possibly degenerate or nongeneric) subdivision of a rectangle into
squares. The result generalizes to rectangular faces of arbitrary aspect ratios (rather than
squares):

▶ Theorem 14. (Schramm [31, Thm. 8.1]) Let T = (V, E) be a near-triangulation with an
outer 4-cycle, and α : V ∗ → R+ a function on the set V ∗ of the inner vertices of T . Then
there exists a unique (but possibly degenerate or nongeneric) layout L such that G∗(L) = T ,
and for every v ∈ V ∗, the aspect ratio of the rectangle corresponding to v is α(v).

The caveat in Schramm’s result is that all rectangles in the interior of every separating 3-cycle
must degenerate to a point, and rectangles in the interior of some of the separating 4-cycles
may also degenerate to a point. We only use the uniqueness claim under the assumption
that a nondegenerate and generic realization exists for a given aspect ratio assignment.

▶ Lemma 15. If a layout L is strongly ARU, then its extended dual graph G∗(L) admits a
unique transversal structure.

Proof. Consider the extended dual graph T = G∗(L) of a strongly ARU layout L. As
noted above, T is a 4-connected inner triangulation of a 4-cycle. If T admits two different
transversal structures, then there are two strongly nonequivalent layouts, L and L′, such
that T = G∗(L) = G∗(L′), which in turn yield two aspect ratio assignments, α and α′, on
the inner vertices of T . By Theorem 14, the (nondegenerate) layouts L and L′ that realize α

and α′ are unique. Consequently, neither of them can be strongly aspect ratio universal. ◀

Lemma 15 readily shows that Theorem 3(i) implies Theorem 3(iii), and provides an
alternative proof for the geometric arguments in Lemmata 10 and 13.

CGT

3:12 Aspect Ratio Universal Rectangular Layouts

3 Recognizing dual graphs of aspect ratio universal layouts

In this section, we describe an algorithm that, for a given graph G, either finds a one-sided
and sliceable (hence strongly ARU) layout L whose dual graph is G, or reports that no such
layout exists (Theorem 4).

Assume that we are given a near-triangulation G (that is, a plane graph where every
bounded face is a triangle). A slice of a layout corresponds to an edge cut in the dual graph
that contains at most two edges of the outer face. If a slice is one-sided, the edges in the
edge cut form a star; and the edge cut is determined by its edges on the boundary of the
outer face. A brute force algorithm would guess a slice (i.e., edge cut), and recurse on the
two subproblems; it would run in exponential time. We obtain a polynomial-time algorithm
using a key insight: If we already know a slice, then in each subproblem, we know two corner
rectangles. Our algorithm will utilize partial information about the corner rectangles.

Problem formulation. The input of our recursive algorithm will be an instance I = (G, C, P),
where G is a near-triangulation, C : V (G)→ N0 is a corner count, and P is a set of ordered
pairs (u, v) of vertices on the outer face of G. An instance I = (G, C, P) is realizable if
there exists a one-sided sliceable layout L such that G is the dual graph of L, every vertex
v ∈ V (G) corresponds to a rectangle in L incident to at least C(v) corners of the bounding
box R of L, and every pair (a, b) ∈ P corresponds to a pair of rectangles in L incident to
two counterclockwise consecutive corners of R. When we have no information about corners,
then C(v) = 0 for every v ∈ V , and P = ∅. For convenience, we also maintain the total
count C(V) =

∑
v∈V C(v), and the set K = {v ∈ V (G) : C(v) > 0} of vertices with positive

corner count.

3.1 Structural properties of one-sided sliceable layouts
Throughout this section, we use a default notation: If an instance (G, C, P) is realizable by a
one-sided sliceable layout L, then R denotes the bounding box of L, and for every v ∈ V (G),
rv denotes the rectangular face of L corresponding to v. Note that any sublayout of a
one-sided sliceable layout is also one-sided and sliceable (i.e., both properties are hereditary).

(a) (b) (c) (d)

rv rv

rw

rv

Figure 8 A one-sided sliceable layout and its dual graph G. (a–b) If v is a cut vertex of G, then
rv is bounded by two slices. (c–d) If there is no cut vertex in G, then some rectangular face rv is
incident to two corners.

▶ Lemma 16. Assume that (G, C, P) admits a realization L and |V (G)| ≥ 2. Then G

contains a vertex v with one of the following (mutually exclusive) properties.
(I) Vertex v is a cut vertex in G. Then rv is bounded by two parallel sides of R and by two

parallel slices; and C(v) = 0; see Fig. 8a–8b).
(II) Rectangle rv is bounded by three sides of R and by a slice; and 0 ≤ C(v) ≤ 2; see

Fig. 8c–8d.

S. Felsner et al. 3:13

Proof. Let v be a cut vertex of G. Then rv intersects the boundary of R in at least two
disjoint arcs. Since both rv and R are axis-parallel rectangles and rv ⊂ R, their boundaries
can intersect in at most two disjoint arcs, which are two parallel sides of rv. The other two
parallel sides of rv form slices. In particular, rv is bounded by two parallel sides of R and
two slices, and so it is not incident to any corner of R. In this case, v has property (I).

Assume that G does not have cut vertices. Since L is sliceable, it is subdivided by a slice
s which is a segment between two opposite sides of R. Since L is one-sided, s must be the
side of a rectangle rv for some v ∈ V (G). If both sides of rv parallel to s are in the interior
of R, then rv is bounded by two sides of R and by two slices. Since the sublayouts of L on
the opposite sides of these slices are disjoint, then v is a cut vertex in G, contrarily to our
assumption. Consequently, the other side of rv parallel to s must be a side of R. Then rv is
bounded by three sides of R and by s. Clearly, rv is incident to precisely two corners of R,
and so v has property (II). ◀

Based on property (II), we say that a vertex v of G is a pivot if there exists a one-sided
sliceable layout L with G ≃ G(L) in which rv is bounded by three sides of R and a slice. If
we find a cut vertex or a pivot v in G, then at least one side of rv is a slice, so we can remove
v and recurse on the connected components of G− v.

Recursive calls. Given an instance I = (G, C, P), we define the subproblems created by
removing the vertex v in both cases (where v is either a cut vertex or a pivot):

(I) For a cut vertex v of G, we define the operation Split(G, C, P ; v) as follows. The graph
G− v must have precisely two components, G1 and G2. Let (u1, . . . , w1) and (u2, . . . , w2)
be the sequence of neighbors of v in G1 and G2, resp., in clockwise order. Initialize C1
and C2 as the restriction of C to V (G1) and V (G2), respectively. Set Ci(ui)← Ci(ui) + 1
and Ci(wi) ← Ci(wi) + 1 for i ∈ {1, 2} (if ui = wi, we increment Ci(ui) by 2). For each
pair (a, b) ∈ P , if both a and b are in V (Gi) for some i ∈ {1, 2}, then add (a, b) to Pi.
Otherwise we may assume, without loss of generality, that a ∈ V (G1) and b ∈ V (G2), and
the counterclockwise path (a, b) contains either u1, v, w2 or w1, v, u2. The removal of v splits
the path into two subpaths, that we add into P1 and P2, accordingly. Finally we add (u1, w1)
to P1 and (u2, w2) to P2. Return the instances (G1, C1, P1) and (G2, C2, P2).

▶ Lemma 17. Let v be a cut vertex of G. An instance (G, C, P) is realizable if and only if
both instances returned by Split(G, C, P ; v) are realizable.

Proof. First assume that L is a realization of instance (G, C, P). The removal of rectangle
rv splits L into two one-sided and sliceable sublayouts, L1 and L2. It is easily checked that
they realize (G1, C1, P1) and (G2, C2, P2), respectively.

Conversely, if both (G1, C1, P1) and (G2, C2, P2) are realizable, then they are realized by
some one-sided sliceable layouts L1 and L2, respectively. The union of a square rv and scaled
copies of L1 and L2 attached to two opposite sides rv yields a one-sided sliceable layout L
that realizes (G, C, P). ◀

(II) Let v be a pivot of G. We define the operation Remove(G, C, P ; v) as follows. Since v

is not a cut vertex, then G− v has precisely one component, which we denote by G′. Let
(u, . . . , w) be the sequence of neighbors of v in G′ in clockwise order. Initialize C ′ as the
restriction of C to V (G′), and then set C ′(u)← C ′(u) + 1 and C ′(w)← C ′(w) + 1. If for any
pair (a, b) ∈ P , the counterclockwise path from a to b in G contains v, then return False.
Otherwise, set P ′ = P , and add (u, w) to P ′. Return the instance (G′, C ′, P ′).

CGT

3:14 Aspect Ratio Universal Rectangular Layouts

▶ Lemma 18. Let v be a vertex of the outer face of G, but not a cut vertex. An instance
(G, C, P) is realizable with pivot v if and only if the instance returned by Remove(G, C, P ; v)
is realizable.

Proof. Assume that (G, C, P) is realized by a one-sided scliceable layout L, and v has
property (II). The removal of rectangle rv from L creates a one-sided sliceable sublayout L′.
It is easily checked that L′ realizes the instance (G′, C ′, P ′) returned by Remove(G, C, P ; v).

Conversely, assume that the instance (G′, C ′, P ′) returned by Remove(G, C, P ; v) is
realized by a layout L′. Then let suw be the maximum segment that connects the two corners
of the bounding box of L′ incident to the ru and rw, where (u, w) ∈ P ′ \ P . We can attach a
single rectangular face rv to the bounding box of L′ along segment suw and obtain a layout
L that realizes (G, C, P). ◀

Finding a pivot. In the absence of a cut vertex, any vertex incident to the outer face of G

might be a pivot. We use partial information on the corners to narrow down the search for a
pivot.

▶ Lemma 19. Assume that an instance (G, C, P) admits a realization L. If |V (G)| ≥ 2 and
C(v) ≥ 2 for some vertex v ∈ V (G), then v is a pivot.

Proof. The rectangle rv is incident to at least two corners of R. If rv is incident to two
opposite corners of R, then rv = R, contradicting the assumption that G has two or more
vertices. Hence rv is incident to two consecutive corners of R, and so it contains some side s

of R. The other side of rv parallel to s is a maximal segment between two opposite sides of
R, so it must be a slice. ◀

In the absence of a cut vertex, we are looking for a pivot in a 2-vertex-cut (i.e., 2-cut).
Recall that a sliceable layout L corresponds to a BSP-tree in which every nonleaf node
corresponds to a sublayout L′ of L together with a slice of L′.

▶ Lemma 20. Let L be a one-sided sliceable layout whose dual graph G(L) is 2-connected and
has a 2-cut {u, v}. Then there exists a one-sided sliceable layout L′ such that G(L′) ≃ G(L)
and the root slice separates the rectangles corresponding to u and v. In particular, u or v is
a pivot.

Furthermore, if there are two rectangular faces in L that are each incident to exactly one
corner of L, then the corresponding rectangular faces in L′ are also incident to some corners
in L′, or there exists a one-sided sliceable layout L′′ with G(L′′) ≃ G(L) in which one of
these rectangular faces is a pivot.

Proof. Let R be the bounding box of L; let ru and rv denote the rectangular faces corre-
sponding to u and v, respectively. Since G is a near-triangulation, then u and v are adjacent
in V (G). Let s0 be the maximal segment that separates ru and rv. If s0 connects two
opposite sides of R, the proof is complete with L′ = L, so we may assume otherwise. Because
L is one-sided, whenever two rectangular faces are in contact, a side of one rectangle fully
contains a side of the other. We distinguish between two cases:

Case 1: ru and rv are in contact with opposite sides of R. We may assume,
without loss of generality, that ru and rv are in contact with the bottom and top side of R,
resp., and the bottom side of rv contains the top side of ru; see Fig. 9a. Since L is one-sided,
s0 is a side of some rectangular face in L, and we may assume that s0 is the bottom side of
rv. The left (resp., right) side of rv lies either along ∂R or in a vertical segments s1 (resp.,
s2). Since s0 does not reach both left and right sides of R by assumption, at least one of

S. Felsner et al. 3:15

s1 and s2 exists. Assume, without loss of generality, that s1 exists. Since the bottom-left
corner of rv is the endpoint of s0, it lies in the interior of segment s1.

We claim that the bottom endpoint of s1 is on the bottom side of R. Suppose otherwise.
Then we can incrementally construct a counterclockwise winding path W : it starts with
a downward edge along s1. Append an edge to W by making a left turn and following a
maximal segment to its endpoint, until the endpoint of W is on the boundary of R or in the
interior of a previous edge of W . As W can cross neither ru nor rv, and it cannot make a
right turn if it reaches s0, then it cannot reach the boundary of R. Consequently, W ends in
the interior of one of its previous edges, and the maximal segments generated by its last four
edges form a counterclockwise windmill, contradicting the assumption that L is sliceable.
This completes the proof of the claim.

ru

rv

s1

s0

L

R

r1

(a)

r′u

r′v

s′1

s′0

L′

R′ = R

r′1

(b)

Figure 9 (a) A one-sided sliceable layout L where ru and rv touch two opposite sides of the
bounding box R. (b) The modified layout L′ within the same bounding box R′ = R.

We can now modify L by extending s0 and rv horizontally to the right side of R, and clip
both s1 and r1 to s0, as in Fig. 9b. This modification changes the contacts between rv and
r1 from vertical to horizontal, but does not change any other contacts in the layout, so it
does not change the dual graph G(L). If segment s2 exists, we can similarly extend s0 to the
right side of R and clip s2. We obtain a sliceable layout L′ with G(L′) ≃ G(L) in which the
root slice s′

0 separates r′
u and r′

v, and rectangle r′
v is a pivot. Furthermore, every rectangle

incident to a corner in L remains incident to some corner in L′.
Case 2: ru and rv are not in contact with opposite sides of R. Then ru and rv

are each in contact with a single side of R, and these sides are adjacent. We may assume,
without loss of generality, that ru is in contact with the bottom side of R, rv is in contact
with the left side of R, and the bottom side of ru contains the top side of rv; refer to Fig. 10a.
Because L is one-sided and s0 is not the root slice, then s0 equals the bottom side of rv.

We incrementally construct an x- and y-monotone increasing directed path P (i.e., a
staircase) starting with edge s0, directed to its right endpoint p0. Initially, let P = {s0} and
i := 0. While pi is not in the top or right side of R, let pi+1 be the top or right endpoint of
segment si, append the edge pipi+1 to P , and let si+1 be the segment orthogonal to si that
contains pi+1. Since the path P is x- and y-monotonically increasing, it does not revisit any
segment. Thus the recursion terminates, and P reaches the top or right side of R.

Let s−1 denote the right side of ru. We claim that for i = 1, . . . , k, if si is vertical, its
bottom endpoint is on the bottom side of R, and if si is horizontal, its left endpoint is on
the left side of R. The claim clearly holds for i = 0, since s0 is the bottom side of rv, which
is in contact with the left side of R. Suppose for contradiction that the claim holds for si−1
but not for si. Then the clockwise or counterclockwise winding path starting with si would
create a windmill (as it can cross neither si−1 nor si−2, contradicting the assumption that L
is sliceable.

CGT

3:16 Aspect Ratio Universal Rectangular Layouts

A3A1

A2

r3

rv

P

s1

s2
r2 s3

s4
r4A4

r1ru

s0

A0

A′
3

p0

p1
p2

p3

(a) {u, v} is a 2-cut of G(L).

s′0 r′v

r′u

A′
0

r′1
r′3

r′2

r′4

P ′ A′
1A′

3

A′
4

A′
2

A′
3

s′1

s′2

s′3

s′4

(b) Layout L′, where r′
v is a pivot.

Figure 10 The construction of L′ from L.

The segments s0, s1, . . . , sk jointly form a one-sided sliceable layout, that is, they subdivide
R into k + 2 rectangular regions, each of which contains a sublayout of L. One of these
regions is rv. Label the remaining k regions by A0, A1, . . . , Ak in the order in which they
occur along P ; see Fig. 10a. In particular, we have ru ⊂ A0. For i = 1, . . . , k, region Ai is
bounded by ∂R and segments si, si+1, and si+2 (if they exist); and Ak is adjacent to the
top-right corner of R. Because L is one-sided, segment si is a side of a rectanglular face
that we denote by ri, for i = 1, . . . , k; and ri ⊆ Ai as the opposite side of si is subdivided by
segment si−1.

Furthermore, we claim that Ak = rk. Indeed, Ak is bounded by segment sk and three
sides of B. If Ak ≠ rk, then rk separates the subarrangement A \ rk from r. This means that
vrk

would be a cut vertex in G(L), contradicting the assumption that G(L) is 2-connected.
We recursively construct a one-sided sliceable L′ by placing rectangles and subarrangement

corresponding to those in L such that G(L) ≃ G(L′); refer to Fig. 10b. Let R′ be the bounding
box of L′. First subdivide R′ by a horizontal segment s′

0; and let r′
v be the rectangle below

s′
0. This ensures that s′

0 is the root slice and r′
v is a pivot. Subdivide the region above s′

0
by a vertical segment s′

1 into two rectangular regions. Denote the right region by A′
0, and

subdivide the left region as follows: For i = 2, . . . , k, recursively subdivide the rectangle
incident to the top-left corner of R′ by a segment s′

i orthogonal to si.
Segments s′

0, . . . , s′
k jointly subdivide R′ into k+2 rectangular regions: r′

v and A′
0, A′

1, . . . , A′
k

in the order in which they are created, where A′
k is incident to the top-left corner of R′;

and all other regions are in contact with either the left or the top side of R′. We insert
a sublayout in each region A′

i. First insert a 180◦-rotated affine copy of A0 into A′
0. For

i = 1, . . . , k − 1, insert r′
i into A′

i such that its top or left side is s′
i+1; and if Ai−2 \ ri−2

is nonempty, insert an affine copy of the sublayout Ai−1 \ ri−1 into A′
k. Finally, for i = k,

subdivide A′
k into three rectangles by slices orthogonal to s′

k: If Ak−2 \ rk−2 or Ak−1 \ rk−1
is nonempty, insert an affine copy in the first and third rectangle in A′

k; and fill all remaining
space by r′

k. This completes the construction of layout L′ (see Fig. 10b). By construction,
we have G(L′) ≃ G(L).

It remains to track the rectangles incident to the corners of L and L′. In the original
layout L, the rectangular face rk is incident to two corners of R. Assume, without loss
of generality, that rk is incident to the two top corners of R (as in Fig. 10a), and two

S. Felsner et al. 3:17

distinct rectangular faces rleft ⊂ A0 and rright ⊂ Ak−1 are incident to the bottom-left and
bottom-right corners of R, respectively. The sublayout A0 was inserted into A′

0 after a 180◦

rotation, and so r′
left ⊂ A′

0 is incident to the top-right corner in L′. If rright ⊂ Ak−1 \ rk−1,
then Ak−1 \ rk−1 is nonempty and it was inserted into the top third of A′

k after a 180◦

rotation, and so r′
right is incident to the top-left corner in L′. Otherwise Ak−1 = rk−1, and

then rright = rk−1. In this case r′
k is incident to the top-left corner in L′. However, we can

modify L by extending rk−1 and sk−1 to the top side of R, and obtain a one-sided sliceable
layout L′′ with G(L′) ≃ G(L) in which r′′

right = r′′
k−1 is a pivot. This completes the proof in

Case 2. ◀

▶ Lemma 21. Assume that an instance (G, C, P) is realizable; G is 2-connected; |V (G)| ≥ 4;
there exist two adjacent vertices, u and v, such that C(u) = C(v) = 1, and C(w) = 0 for all
other vertices. Then u or v is a pivot; or else G has a 2-cut and a vertex of an arbitrary
2-cut is a pivot.

Proof. Let L be a one-sided sliceable layout that realizes (G, C, P). If ru and rv contain two
opposite corners of L, then the maximal line segment that separates them is a slice of L,
and so ru or rv must also contain another corner, and thus be a pivot.

We may assume, then, that ru and rv contain adjacent corners of L, which we may
assume, without loss of generality, to be the top-left and bottom-left corners, respectively. If
either spans the width of L and contains another corner, then it corresponds to a pivot and
the proof is complete.

ru

rvL

R

rp

(a)

rvL′

R

rp

ru

(b)

rvL

R

rp

ru

rq

sq sp

(c)

rvL

R

rp

ru

s1r1

(d)

Figure 11 (a) Rectangles ru, ru, and rp jointly contain all four corners of R. (b) Modifying the
boundary between ru and rp. (c) If both sp and sq are slices, then q would be a cut vertex. (d) The
topmost segment s1 between the left edge of R and the left edge of rp is a side of r1.

Assume that ru and rv each contain only one corner of L; see Fig. 11. There is some
rectangular face rp that contains the top-right and bottom-right corners of L, or else there
would be no pivot, contradicting Lemma 16. If ru and rp are adjacent, then we can modify
L by removing the right side of ru and extending the bottom side of ru to the right side of
R; refer to Figs. 11a–11b. This yields a layout L′ realizing (G, C, P) in which ru contains
two corners, and thus u is a pivot. The same argument can be made for v being a pivot if rv

and rp are adjacent.
In the remainder of the proof, we assume that neither ru nor rv is in contact with rp.

The left side of rp is a slice as it connects the top and bottom sides of R. Note that R cannot
have any other slice, as it would be a side of some rectangle rq, which does not contain
any corner (cf. Fig. 11c); and so q would be a cut vertex, contrary to out assumption that
G is 2-connected. This implies, using the fact that L is sliceable, that L has at least one
horizontal segment from the left side of R to the left side of rp. Let s1 be the topmost such
segment; see Fig. 11d. As L is one-sided, then s1 must be the side of some rectangular face

CGT

3:18 Aspect Ratio Universal Rectangular Layouts

r1. The rectangular face r1 can be neither ru nor rv, since they are not in contact with rp.
The vertices in G corresponding to r1 and rp form a 2-cut, so G has a 2-cut. Lemma 20
guarantees that for any 2-cut, there is a one-sided sliceable layout L′ with G(L′) ≃ G(L) in
which one of the vertices of the 2-cut is a pivot. Such a layout L′ realizes (G, C, P) if the
rectangular faces corresponding to u and v are each incident to some corners of L′. Since ru

and rv are each incident to a single corner of L, then Lemma 20 further guarantees that L′

is a one-sided sliceable layout that realizes (G, C, P) and one of the vertices in the 2-cut is a
pivot; or else u or v is a pivot. ◀

Recall that for an instance I = (G, C, P), we defined the set K = {v ∈ V (G) : C(v) > 0}
of vertices that must contain corners in the realization. We show that if we already have 3
or 4 vertices in K, then G has a cut vertex or a vertex in K is a pivot.

▶ Lemma 22. Assume that (G, C, P) is realizable and |V (G)| ≥ 2.
1. If |K| = 4, then G has a cut vertex.
2. If |K| = 3, then G has a cut vertex or some vertex v ∈ K is a pivot.

Proof. Let L be a realization of (G, C, P). If G has a cut vertex, the proof is complete.
Assume otherwise. Then, by Lemma 16, there exists a rectangular face ru is incident to two
corners of L, and in particular u ∈ V (G) is a pivot. As R has only four corners, each of
which is incident to a unique rectangular face in L, then at most two additional rectangular
faces in L are incident to corners, hence |K| ≤ 3.

Assume that |K| = 3. Since R has only four corners, each of which is incident to a
rectangular face in L, the pivot u is one of the three vertices in K. ◀

3.2 Recognition algorithm
We are now ready to prove the main result of this section.

▶ Theorem 4. We can decide in O(n2) time whether a given graph G with n vertices is the
dual of a one-sided sliceable layout.

Proof. Given a graph G, we can decide in O(n) time whether G is a proper graph [12, 23,
25, 26]. If G is proper, then it is a connected plane graph in which all bounded faces are
triangles. Let an initial instance be I = (G, C, P), where C(v) = 0 for all vertices v, and
P = ∅. We run the recursive algorithm Recognize(G, C, P) below.
Correctness. We argue that algorithm Recognize(G, C, P) correctly reports whether an
instance (G, C, P) is realizable.

Lines 3–4. A graph with only one vertex corresponds to a layout containing a single
rectangle, which is clearly aspect ratio universal.

Lines 5–6. A rectangle that contains three or more corners of a layout must be the
only rectangle in the layout. However, the algorithm reaches this step only if there are
multiple vertices in the graph (Lines 3–4), so a vertex with a corner count of 3 or more is a
contradiction.

Lines 7–9. Lemma 17 established that an instance is realizable if and only if both
instances produced by a Split operation are realizable.

Lines 10–26. In the absence of a cut vertex, we try to find a pivot. Lemma 18 established
that an instance is realizable if and only if it remains realizable after removing a pivot.

(A) Lines 10–11. Lemma 19 shows that a vertex v with C(v) = 2 is a pivot.

S. Felsner et al. 3:19

1 Recognize(G, C, P)
input : a near triangulation G, a corner count C : V (G)→ N0, and a set P of

ordered pairs of vertices on the outer face of G

output : whether G has an aspect ratio universal dual
2 begin
3 if |V (G)| = 1 then
4 return True
5 else if G has a vertex v with C(v) > 2 then
6 return False
7 else if G has a cut vertex v then
8 Split(G, C, P ; v) yields (G1, C1, P1) and (G2, C2, P2)
9 return Recognize(G1, C1, P1) ∧ Recognize(G2, C2, P2)

10 else if G has a vertex v with C(v) = 2 then
11 return Recognize(Remove(G, C, P ; v))
12 else if P = {(u, v)} with C(u) = C(v) = 1 and |K| = 2 then
13 foreach w ∈ {u, v} do
14 if Recognize(Remove(G, C, P ; w)) then
15 return True

16 if G has a 2-cut then
17 Let {w1, w2} be an arbitrary 2-cut of G

18 foreach w ∈ {w1, w2} do
19 if Recognize(Remove(G, C, P ; w)) then
20 return True

21 else if |K| = 3 then
22 foreach v ∈ K do
23 if Recognize(Remove(G, C, P ; v)) then
24 return True

25 else if |K| = 0 then
26 foreach vertex v of the outer face of G do
27 if Recognize(Remove(G, C, P ; v)) then
28 return True

29 return False

CGT

3:20 Aspect Ratio Universal Rectangular Layouts

(B) Lines 12–20. Lemma 21 shows that if C(u) = C(v) = 1 and the corner count of all
other vertices is zero (hence K = {u, v} and |K| = 2), then u or v is a pivot, or at least
one vertex in every 2-cut is a pivot. The algorithm tests whether u or v is a pivot, or any
vertex of an arbitrary 2-cut is a pivot.

(D) Lines 21–24. By Lemma 22, when |K| = 3, a vertex in K must be a cut vertex or a
pivot, or else the instance is not realizable.

(E) Lines 25–28. If we have no information about the corners and there is no cut vertex
(that is, C(v) = 0 for all v ∈ V (G), hence K = ∅), then one of the vertices in the outer
face must correspond to a pivot by Lemma 16, or else (G, C, P) is not realizable.

Line 29. If we find neither a cut vertex nor a pivot, then the instance is not realizable
by Lemma 18.

Data structures. Algorithm Recognize(G, C, P) recursively removes a cut vertex or a
pivot v of G, and recurses on connected components of G − v. The recursive calls are
supported by an in-place data structure that dynamically maintains the instance (G, C, P).
Specifically, we maintain G in the classical doubly-link edge list (for short DCEL) data
structure [11, 35]; see also [16]. It maintains the incidences between vertices, edges, and faces;
and supports edge deletion in O(1) time, hence the deletion of a vertex v in O(deg(v)) time.

We augment the classical DCEL data structure with three binary indicator variables for
(1) vertices of the outer face, (2) cut vertices, and (3) edges corresponding to 2-cuts. The
DCEL data structure already maintains the cyclic list of vertices incident to the outer face.
The algorithm maintains the property that G is an internally triangulated plane graph. This
in turn implies that a vertex v is a cut vertex if and only if the outer face appears at least
twice in the cyclic order of all faces incident to v. Similarly, {u, v} is a 2-cut if and only
if uv is an edge and the outer face appears at least twice in the cyclic order of all faces
incident to uv. Consequently, we can identify new cut vertices (resp., edges corresponding to
2-cuts) in O(1) time whenever a new vertex or edge becomes incident to the outer face. The
Split and Remove operations each remove a cut vertex or a pivot, which is incident to the
outer face, and so the distance of any vertex to the outer face monotonically decreases. This
implies that each indicator variable changes at most once, hence all three variables can be
maintained in O(n) total time in any descending path of the recursion tree.

Runtime analysis. Let T be the recursion tree of the algorithm Recognize(G, C, P) for
some initial instance (G, C, P). The number of vertices in G strictly decreases along each
descending path of T , and so the depth of the tree is O(n).

We distinguish between two types of nodes in T : If a step in lines 8–9 is executed, then
the vertex set V (G) is partitioned among the recursive subproblems; we call these partition
nodes of T . In the steps in (B) lines 12–20, (D) lines 21–24, and (E) lines 25–28, however,
|V (G)| − 1 vertices appear in all four, three, or O(|V (G)|) recursive subproblems; we call
these duplication nodes of T . The algorithm performs a DFS traversal of T sequentially, and
so the same in-place DCEL data structure of size O(n) can support the entire course of the
algorithm.

We first analyze the special case that T does not have duplication nodes. Then T is a
binary tree with O(n) nodes. Overall, the total time taken by maintaining G (in the DCEL
data structure) and the annotation C and P is O(n) over the course of the algorithm.

Next, we analyze the impact of duplication nodes. We claim that steps (B), (D) and
(E) are reached at most once. Note first that the total corner count C(V) =

∑
v∈V C(v)

monotonically increases along any descending path of T . In the initial instance, we have

S. Felsner et al. 3:21

C(V) = 0. All Remove and Split operations produce subproblems with C(V) ≥ 2. Every
Remove operation removes one vertex v with C(v) ≤ 2 and increments the total corner
count by two.

Due to the steps in (A) lines 10-11, we may assume that C(v) ∈ {0, 1} for all v ∈ V (G),
hence C(V) = |K| in steps (B), (D), and (E). Step (B) can be reached only when C(V) = 2 and
two distinct vertices have positive corner counts. In this case, operation Remove(G, C, P ; v)
in line 14 or 19 removes at most one of these vertices, and increments the corner counts by
two, yielding a subproblem with C(V) = 3. Similarly, step (D) can be reached only when
C(V) = 3, and produces a subproblem with C(V) = 4. Finally, step (E) can be reached
when C(V) = 0, and Remove(G, C, P ; v) in line 27 produces a yields a subproblem with
C(V) = 2. As steps (B), (D), and (E) produce at most four, three, and O(|V (G)|) recursive
subproblems, resp., the duplication nodes increase the upper bound on the runtime by a
factor of 4 · 3 · n = 12n, hence it is O(n2). ◀

4 Conclusions

We have shown that a layout L is weakly (resp., strongly) ARU if and only if L is sliceable
(resp., one-sided and sliceable); and one can decide in O(n2) time whether a given graph G

on n vertices is the dual graph of a one-sided sliceable layout. An immediate open problem is
whether the runtime can be improved. Recall that no polynomial-time algorithm is currently
known for recognizing the dual graphs of sliceable layouts [4, 19, 38] and one-sided layouts [6].
It remains open to settle the computational complexity of these problems.

Cut vertices and 2-cuts play a crucial role in our algorithm. We can show (Proposition 23
below) that the dual graphs of one-sided sliceable layouts have vertex cuts of size at most
three. In contrast, the minimum vertex cut in the dual graphs of one-sided layouts (resp.,
sliceable layouts) is unbounded. Perhaps 3-cuts can be utilized to speed up our algorithm.

▶ Proposition 23. Let G be the dual graph of a one-sided sliceable layout. If |V (G)| ≥ 4,
then G contains a vertex cut of size at most 3.

Proof. Let L be a one-sided sliceable layout with n ≥ 4 rectangular faces in a bounding
box R, and with dual graph G = G(L). For a rectangular face r in L, let v(r) denote the
corresponding vertex in G. If G is outerplanar, then either G has a cut vertex, or G is a
triangulated n-cycle, hence any diagonal forms a 2-cut. We may assume that G has an
interior vertex.

Consider a sequence of segments that recursively subdivide R into the layout L; and let
us focus on the first subdivision step that creates a rectangle R0 in the interior of R. We
may assume, without loss of generality, that R0 is bounded by the segments s1, . . . , s4 in
counterclockwise order, the subdivision along s4 splits some rectangle into R0 and R1, and
s4 is the bottom side of R0. Then the two endpoints of s4 lie in the relative interiors of s1
and s3. Since L is one-sided, s1 is the right side of some rectangular face r1, and s3 is the
left side of some rectangular face r3 of L. Since R0 is the first rectangle in the interior of R,
both s1 and s2 has an endpoint on the boundary of R; see Fig. 12a.

We claim that at most two maximal horizontal segments in L intersect both s1 and s3
in the interior of R. Suppose, to the contrary, that three or more such segments (Fig. 12b).
Let s′ be one of them other than the lowest or highest. Since L is one-sided, s′ is a side of
some rectangular face r′ in L, which is adjacent to both r1 and r3, but not adjacent to the
boundary of R, hence {v(r1), v(r′), v(r3)} is a 3-cut in G.

In the remainder of the proof, we may assume that at most two maximal horizontal
segments intersect both s1 and s3 in the interior of R. Consequently s2 (s4) is the highest

CGT

3:22 Aspect Ratio Universal Rectangular Layouts

s2

s3

s4

R

r3 r1

R0

R1

s1

(a)

s2

s3

s4

R

r3 r1

s1

s′
r′

(b)

s2

s3

s4

R

r3
r1

r4

s1r5

s5

r2

(c)

Figure 12 Schematic views of the arrangements in the proof of Proposition 23.

(lowest) such segment. Since L is one-sided, s4 is the side of some rectangular face r4 of L.
If s4 is the bottom side of r4, then {v(r1), v(r2), v(r3)} is a 3-cut in G. We may assume that
s4 is the top side of a rectangle r4 in L. Since no segment intersects both s1 and s3 below
s4, then r4 = R1 (as in Fig. 12c).

If R0 is not sliced further recursively, then {v(r1), v(R0), v(r3)} is a 3-cut in G. Otherwise,
let s5 be the first segment that slices R0. Segment s5 cannot be horizontal, as it would
intersect both s1 and s3, contrary to the assumption above. So s5 is vertical (Fig. 12c), and
it is a side of some rectangular face r5 of L, which is adjacent to s2 and s4. This further
implies that s2 is the bottom side of a rectanglular face r2 of L. If r2 is adjacent to the
boundary of R, then {v(r4), v(r5), v(r2)} is a 3-cut; else r2 lies in the interior of R and
{v(r1), v(r2), v(r3)} is a 3-cut in G. ◀

References
1 Eyal Ackerman, Gill Barequet, and Ron Y. Pinter. A bijection between permutations and

floorplans, and its applications. Discret. Appl. Math., 154(12):1674–1684, 2006. doi:10.1016/
j.dam.2006.03.018.

2 Andrei Asinowski and Toufik Mansour. Separable d-permutations and guillotine partitions.
Annals of Combinatorics, 14:17–43, 2010. doi:10.1007/s00026-010-0043-8.

3 Rowland Leonard Brooks, Cedric A. B. Smith, Arthur H. Stone, and William T. Tutte.
The dissection of rectangles into squares. Duke Math. J., 7(1):312–340, 1940. doi:10.1215/
S0012-7094-40-00718-9.

4 Parthasarathi Dasgupta and Susmita Sur-Kolay. Slicible rectangular graphs and their optimal
floorplans. ACM Trans. Design Autom. Electr. Syst., 6(4):447–470, 2001. doi:10.1145/
502175.502176.

5 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Binary space partitions.
In Computational Geometry: Algorithms and Applications, chapter 12, pages 259–281. Springer,
2008. doi:10.1007/978-3-540-77974-2_12.

6 David Eppstein, Elena Mumford, Bettina Speckmann, and Kevin Verbeek. Area-universal
and constrained rectangular layouts. SIAM J. Comput., 41(3):537–564, 2012. doi:10.1137/
110834032.

7 Stefan Felsner. Lattice structures from planar graphs. Electron. J. Comb., 11(1), 2004. URL:
http://www.combinatorics.org/Volume_11/Abstracts/v11i1r15.html.

8 Stefan Felsner. Rectangle and square representations of planar graphs. In János Pach,
editor, Thirty Essays on Geometric Graph Theory, pages 213–248. Springer, 2013. doi:
10.1007/978-1-4614-0110-0_12.

9 Stefan Felsner. Exploiting air-pressure to map floorplans on point sets. J. Graph Algorithms
Appl., 18(2):233–252, 2014. doi:10.7155/jgaa.00320.

https://doi.org/10.1016/j.dam.2006.03.018
https://doi.org/10.1016/j.dam.2006.03.018
https://doi.org/10.1007/s00026-010-0043-8
https://doi.org/10.1215/S0012-7094-40-00718-9
https://doi.org/10.1215/S0012-7094-40-00718-9
https://doi.org/10.1145/502175.502176
https://doi.org/10.1145/502175.502176
https://doi.org/10.1007/978-3-540-77974-2_12
https://doi.org/10.1137/110834032
https://doi.org/10.1137/110834032
http://www.combinatorics.org/Volume_11/Abstracts/v11i1r15.html
https://doi.org/10.1007/978-1-4614-0110-0_12
https://doi.org/10.1007/978-1-4614-0110-0_12
https://doi.org/10.7155/jgaa.00320

S. Felsner et al. 3:23

10 Éric Fusy. Transversal structures on triangulations: A combinatorial study and straight-line
drawings. Discret. Math., 309(7):1870–1894, 2009. doi:10.1016/j.disc.2007.12.093.

11 Leonidas J. Guibas and Jorge Stolfi. Primitives for the manipulation of general subdivisions
and the computation of Voronoi diagrams. ACM Trans. Graph., 4(2):74–123, 1985. doi:
10.1145/282918.282923.

12 Md. Manzurul Hasan, Md. Saidur Rahman, and Muhammad Rezaul Karim. Box-rectangular
drawings of planar graphs. J. Graph Algorithms Appl., 17(6):629–646, 2013. doi:10.7155/
jgaa.00309.

13 Xin He. On finding the rectangular duals of planar triangular graphs. SIAM J. Comput.,
22(6):1218–1226, 1993. doi:10.1137/0222072.

14 Frederick V. Henle and James M. Henle. Squaring the plane. Am. Math. Mon., 115(1):3–12,
2008. URL: http://www.jstor.org/stable/27642387.

15 Goos Kant and Xin He. Regular edge labeling of 4-connected plane graphs and its applications
in graph drawing problems. Theor. Comput. Sci., 172(1-2):175–193, 1997. doi:10.1016/
S0304-3975(95)00257-X.

16 Lutz Kettner. Software design in computational geometry and contour-edge based polyhedron
visualization. PhD thesis, ETH Zürich, 1999. doi:10.3929/ethz-a-003861002.

17 Krzysztof Koźmiński and Edwin Kinnen. Rectangular duals of planar graphs. Networks,
15(2):145–157, 1985. doi:10.1002/net.3230150202.

18 Marc J. van Kreveld and Bettina Speckmann. On rectangular cartograms. Comput. Geom.,
37(3):175–187, 2007. doi:10.1016/j.comgeo.2006.06.002.

19 Vincent Kusters and Bettina Speckmann. Towards characterizing graphs with a sliceable
rectangular dual. In Proc. 23rd Sympos. Graph Drawing and Network Visualization (GD),
volume 9411 of LNCS, pages 460–471. Springer, 2015. doi:10.1007/978-3-319-27261-0_38.

20 László Lovász. Graphs and Geometry, volume 65 of Colloquium Publications. AMS, Providence,
RI, 2019.

21 Arturo I. Merino and Torsten Mütze. Combinatorial generation via permutation lan-
guages. III. rectangulations. Discret. Comput. Geom., 70(1):51–122, 2023. doi:10.1007/
S00454-022-00393-W.

22 William J. Mitchell, J. Philip Steadman, and Robin S. Liggett. Synthesis and optimization
of small rectangular floor plans. Environ. Plann. B Plann. Des., 3(1):37–70, 1976. doi:
10.1068/b030037.

23 Takao Nishizeki and Md. Saidur Rahman. Rectangular drawing algorithms. In Handbook on
Graph Drawing and Visualization, pages 317–348. Chapman and Hall/CRC, 2013.

24 Ralph H. J. M. Otten. Automatic floorplan design. In Proc. 19th Design Automation Conference
(DAC), pages 261–267. ACM/IEEE, 1982. doi:10.1145/800263.809216.

25 Md. Saidur Rahman, Shin-Ichi Nakano, and Takao Nishizeki. Rectangular grid drawings of
plane graphs. Comput. Geom., 10(3):203–220, 1998. doi:10.1016/S0925-7721(98)00003-0.

26 Md. Saidur Rahman, Shin-Ichi Nakano, and Takao Nishizeki. Rectangular drawings of plane
graphs without designated corners. Comput. Geom., 21(3):121–138, 2002. doi:10.1016/
S0925-7721(01)00061-X.

27 Erwin Raisz. The rectangular statistical cartogram. Geogr. Review, 24(2):292–296, 1934.
doi:10.2307/208794.

28 Nathan Reading. Generic rectangulations. Eur. J. Comb., 33(4):610–623, 2012. doi:10.1016/
j.ejc.2011.11.004.

29 Ingrid Rinsma. Existence theorems for floorplans. PhD thesis, University of Canterbury,
Christchurch, New Zealand, 1987.

30 Ingrid Rinsma. Nonexistence of a certain rectangular floorplan with specified areas and
adjacency. Environ. Plann. B Plann. Des., 14(2):163–166, 1987. doi:10.1068/b140163.

31 Oded Schramm. Square tilings with prescribed combinatorics. Israel J. Math., 84:97–118,
1993. doi:10.1007/BF02761693.

CGT

https://doi.org/10.1016/j.disc.2007.12.093
https://doi.org/10.1145/282918.282923
https://doi.org/10.1145/282918.282923
https://doi.org/10.7155/jgaa.00309
https://doi.org/10.7155/jgaa.00309
https://doi.org/10.1137/0222072
http://www.jstor.org/stable/27642387
https://doi.org/10.1016/S0304-3975(95)00257-X
https://doi.org/10.1016/S0304-3975(95)00257-X
https://doi.org/10.3929/ethz-a-003861002
https://doi.org/10.1002/net.3230150202
https://doi.org/10.1016/j.comgeo.2006.06.002
https://doi.org/10.1007/978-3-319-27261-0_38
https://doi.org/10.1007/S00454-022-00393-W
https://doi.org/10.1007/S00454-022-00393-W
https://doi.org/10.1068/b030037
https://doi.org/10.1068/b030037
https://doi.org/10.1145/800263.809216
https://doi.org/10.1016/S0925-7721(98)00003-0
https://doi.org/10.1016/S0925-7721(01)00061-X
https://doi.org/10.1016/S0925-7721(01)00061-X
https://doi.org/10.2307/208794
https://doi.org/10.1016/j.ejc.2011.11.004
https://doi.org/10.1016/j.ejc.2011.11.004
https://doi.org/10.1068/b140163
https://doi.org/10.1007/BF02761693

3:24 Aspect Ratio Universal Rectangular Layouts

32 Carsten Thomassen. Plane representations of graphs. In Progress in Graph Theory, pages
43–69. Academic Press Canada, 1984.

33 William T. Tutte. Squaring the square. Scientific American, 199:136–142, 1958. In Gardner’s
‘Mathematical Games’ column. Reprinted with addendum and bibliography in Martin Gardner,
The 2nd Scientific American Book of Mathematical Puzzles & Diversions, pp. 186–209, Simon
and Schuster, New York, 1961.

34 Peter Ungar. On diagrams representing maps. J. London Math. Soc., s1-28(3):336–342, 1953.
doi:10.1112/jlms/s1-28.3.336.

35 Kevin Weiler. Edge-based data structures for solid modeling in a curved surface environment.
IEEE Comput. Graph. Appl., 5(1):21–40, 1985. doi:10.1109/MCG.1985.276271.

36 Shmuel Wimer, Israel Koren, and Israel Cederbaum. Floorplans, planar graphs, and layouts.
IEEE Trans. Circuits Syst., 35(3):267–278, 1988. doi:10.1109/31.1739.

37 Bo Yao, Hongyu Chen, Chung-Kuan Cheng, and Ronald L. Graham. Floorplan representations:
Complexity and connections. ACM Trans. Design Autom. Electr. Syst., 8(1):55–80, 2003.
doi:10.1145/606603.606607.

38 Gary K. H. Yeap and Majid Sarrafzadeh. Sliceable floorplanning by graph dualization. SIAM
J. Discret. Math., 8(2):258–280, 1995. doi:10.1137/S0895480191266700.

https://doi.org/10.1112/jlms/s1-28.3.336
https://doi.org/10.1109/MCG.1985.276271
https://doi.org/10.1109/31.1739
https://doi.org/10.1145/606603.606607
https://doi.org/10.1137/S0895480191266700

	1 Introduction
	1.1 Background and terminology
	1.2 Our results

	2 Aspect ratio universality
	2.1 Sliceable and One-Sided Layouts
	2.2 Unique transversal structure

	3 Recognizing dual graphs of aspect ratio universal layouts
	3.1 Structural properties of one-sided sliceable layouts
	3.2 Recognition algorithm

	4 Conclusions

