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Abstract
In the imprecise 2.5D terrain model, each vertex of a triangulated terrain has precise x- and

y-coordinates, but the elevation (z-coordinate) is an imprecise value only known to lie within some
interval. The goal is to choose elevation values from the intervals so that the resulting precise terrain
is “realistic” as captured by some objective function.

We consider four objectives: (1) minimizing local extrema; (2) optimizing coplanar features; (3)
minimizing surface area; (4) minimizing maximum steepness.

We also consider the problems down a dimension in 1.5D, where a terrain is a poly-line with precise
x-coordinates and imprecise y-coordinate elevations. In 1.5D we reduce three of the problems to a
shortest path problem and show that Problem 2 (optimizing collinear features) can be 2-approximated
via a minimum link path.

In 2.5D, Problem 1 (minimizing local extrema) was proved NP-hard by Gray et al. [Computational
Geometry, 2012]. We give a polynomial time algorithm in the special case when the triangulation is
the triangulation of a polygon. We prove that Problem 2 (optimizing coplanar features) is strongly
NP-complete, but give a constant-factor approximation when the triangles form a path and lie in a
strip. We show that Problems 3 and 4 (minimizing surface area and minimizing maximum steepness)
can be solved efficiently via Second Order Cone Programming.
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1 Introduction

A natural problem that arises in Geographic Information Systems is to compute a triangulated
terrain in 3D space that is “nice” or “realistic”. There is no single objective function to
capture “niceness”. In the study of erosion and hydrology, it is generally accepted that pits in
a triangulated terrain are artifacts of imprecision, due to the unrealistic occurrence of water
accumulation in flow simulations [12]. This motivates minimizing the number of extrema in
the terrain. Since actual terrains tend to be smoothed by erosion, other natural objectives
are to minimize the surface area, or to make the terrain as flat as possible.

A triangulated terrain is often computed from real elevation data. It is usually assumed
that the data is accurate, however data acquisition can be complex and potentially prone
to errors. It may be appropriate to model the input data as coming from a possible range
of values to account for this uncertainty. Dealing with uncertainty or imprecision in the
input data is a broad, well-studied area in computational geometry. Each input point may
be represented by an uncertainty region, and the issue then is to find the best (or worst)
placement of points, one in each region, for the problem at hand. For imprecise points in the
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3:2 Computing Realistic Terrains from Imprecise Elevations

extrema coplanarity/collinearity area/length #4: steepness
1.5D O(n) [§2] 2-approx [§2] O(n) [§2] O(n) [§2]
2.5D for O(n4) [§3] 5-approx [§4.1]
triangulation of polygon strip
2.5D general NP-hard [12] NP-hard [§4.2] SOCP [§5] SOCP [§6]
Table 1 Summary of results, with new results in bold.

plane, there is work on minimizing/maximizing the width, the area of the bounding box, or
the diameter of the points [15, 19].

For the case of terrains, Gray and Evans [10], and Gray [11] formulated the imprecise
2.5D terrain model. In this model, the x, y-coordinates of points are given as input,
along with a triangulation defined on the points when projected to the xy plane, but the
z-coordinate (elevation) of each point is only specified “imprecisely” via an interval of possible
values. We obtain a precise 2.5D terrain (or a “realization” of the imprecise terrain) by
choosing a precise elevation from each uncertainty interval and connecting the points together
according to the input triangulation. A more detailed definition is given in Section 3. We
allow triangulations where the outer face is not the convex hull of the points, for example, a
triangulation of a simple polygon. Although the x, y data could also be considered to be
imprecise (so that the vertex is somewhere within a 3D box), one justification for the current
simpler model is that inaccuracy in the z-coordinate can compensate for inaccuracy in the
x, y-coordinates.

Various “niceness” criteria for choosing a precise terrain have been considered in the past
such as minimizing the number of local extrema [12], or minimizing the length of the shortest
path along the terrain from one point to another [10, 16].

When these problems are NP-hard or have unknown computational complexity for 2.5D
terrains, researchers (e.g., Gray et al. [13]) have considered imprecise 1.5D terrains. Here,
the x-coordinates are precise, and the elevations are the y-coordinates, each of which is given
imprecisely via an interval.

We explore four objective functions that capture different “niceness” criteria for a terrain.
To the best of our knowledge, only the first one (minimizing the number of extrema) has
been considered before. See Table 1 for a summary of the results for these four problems.
Problem 1: Extrema. The objective is to minimize the number of local extrema. A local
extremum is a local maximum or minimum compared to its neighbours in the triangulation.
In a terrain these correspond to peaks or pits. To deal with equal elevations, define a plateau
to be a maximal set of points of equal elevation that are connected by edges. A local
minimum [maximum] is a plateau such that all neighbouring points have higher [lower]
elevations. The problem of minimizing the number of local extrema was proved NP-hard in
2.5D by Gray et al. [12]. We give a polynomial time algorithm for the special case when the
triangulation is the triangulation of a polygon, and solve the 1.5D version in linear time via
a shortest path.
Problem 2: Coplanarity. The objective is to optimize coplanar features. To make a
smooth terrain, we would like triangles to be coplanar with adjacent triangles if possible.
This can be formalized as minimizing the number of patches, where a patch is a maximal
set of coplanar triangles that are connected edge-to-edge. An alternative is to minimize the
number of bends, where a bend is an edge whose two incident triangles are not coplanar.
These objectives have different solutions in general, though they have the same solutions in
1.5D, where the goal is to optimize collinear features: a patch is a maximal set of connected
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collinear edges (a “link”) and a bend is a point whose two incident edges are not collinear.
We show that both the patch and the bend versions are NP-complete in 2.5D. We give an
easy 2-approximation in 1.5D and extend this to a 5-approximation for 2.5D in the special
case where the triangles form a path in a strip (i.e., there are only two y-values). This
triangulation is a special case of a polygon triangulation.

Problem 3: Area. The objective is to minimize the surface area, or in 1.5D, the length.
These are very natural objective functions. In 1.5D this becomes a shortest path problem.
We formulate the 2.5D version as a Second Order Cone Program (SOCP). Second Order Cone
Programming is a type of convex optimization problem that can be solved quite efficiently [20]
(though not in polynomial time).

Problem 4: Steepness. The objective is to minimize the maximum steepness. The
steepness of a segment in 2D is the absolute value of its slope, and steepness of a triangle
in 3D is the norm of its gradient. Minimizing steepness gives a terrain that is as flat as
possible, another reasonable objective.

We formulate the 2.5D version as a Second Order Cone Program, and show that the 1.5D
version is solved via a shortest path—even for a lexicographic version where we minimize the
maximum steepness, and subject to that, minimize the second maximum, etc.

Our paper is organized as follows: Section 2 deals with 1.5D terrains and the later sections
deal with 2.5D terrains, specifically, Section 3 on Problem 1 (Extrema), Section 4 on Problem
2 (Coplanarity), Section 5 on Problem 3 (Area), and Section 6 on Problem 4 (Steepness).
In the Conclusions section, we mention two very natural and practical special cases of the
imprecise 2.5D terrain problem that are left for future work: (1) when the triangulation is
the Delaunay triangulation; and (2) when all the imprecise elevation intervals have the same
length.

1.1 Background

Gray [11] was the first to consider the imprecise terrain model. (See also Gray and Evans [10].)
They considered the problem of finding the shortest path from one point to another over
all precise realizations of the terrain. Recently, various problems have been explored for
imprecise 1.5D and 2.5D terrains. The problem of minimizing the number of extrema was
first explored by Gray et al. [12]. In the general 2.5D case, they show that minimizing the
number of extrema is NP-hard, and there is no O(log logn) approximation algorithm unless
P = NP. Driemel et al. [9] considered the problem of determining whether water can flow
between two points of an imprecise 2.5D terrain. Here, the assumption is that water flows
down the path of steepest descent. Gray et al. [13] considered a few objectives that result
in “smooth” 1.5D terrains, such as minimizing [maximizing] the total turning angle, and
minimizing [maximizing] the largest [smallest] turning angle.

The problem of minimizing the number of links/bends for an imprecise 1.5D terrain is
related to curve simplification. Imai and Iri [14] provide an algorithm that, given as input
an x-monotone polygonal line and ε > 0, computes another polygonal line that is within
vertical distance ε of the input polyline, while containing as few (bend) points as possible.
Although there is no input polyline for the links problem, the output will also be a polyline,
and it will consist of as few points as possible. However, in the links/bends problem, the
points are limited to the n possible x-coordinates given as input, but Imai and Iri’s problem
does not require the bend points to be at any specific locations. Other polyline distance
metrics for simplification have been considered, see [24] for a recent result for the Fréchet
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3:4 Computing Realistic Terrains from Imprecise Elevations

and Hausdorff metrics. For a recent result on curve simplification under uncertainty, see [3].
For a nice survey about curve simplification, see Section 4.1 of [1].

Imprecise points more generally. The imprecise points model has been explored more
generally than for terrains. Given a class of objects in the plane as input, one can ask for a
set of points (one per input object) that optimizes some objective function. For example,
for classes such as line segments or squares, Löffler and Van Kreveld [18] give algorithms
or hardness results for the objectives of minimizing [maximizing] the area or perimeter of
the convex hull of the points. Other optimization objectives for imprecise points have been
explored, including minimizing [maximizing] the width, the area of the bounding box, and the
diameter of the points [15, 19]. Another optimization objective is to compute the minimum
Euclidean weight of a spanning tree [8], over all possible placements of points and over all
possible trees of the points. A non-optimization objective was considered by Löffler and
Snoeyink [17], which asks to compute a data structure to efficiently compute the Delaunay
triangulation for any possible precise realization of the imprecise points. Even more general
is the study of how imprecision affects the accuracy of geometric computations, which is
called “epsilon geometry” [21].

2 1.5D Terrains

The input for an imprecise 1.5D terrain problem consists of n x-coordinates, x1 <

x2 < · · · < xn given in sorted order, and n vertical segments `1, `2, . . . , `n where `i has
x-coordinate xi. The problem is to choose a point pi on `i so that the 1.5D precise terrain
p1, p2, . . . , pn has the desired property. A precise terrain can be thought of as a “realization”
of an imprecise terrain.

In this section we show that optimal 1.5D terrains for Problem 1 (Extrema), Problem 3
(Length), and Problem 4 (Steepness) can be computed in linear time by finding a shortest
path in an appropriate polygon. For Problem 2 (Collinearity) we show that a minimum link
path in the polygon provides a linear time 2-approximation.

Let P be the simple polygon whose vertices are the top and bottom endpoints of the
segments `i, with a chain joining consecutive top endpoints, a chain joining consecutive
bottom endpoints, plus the two edges `1 and `n. See Figure 1. Consider a shortest path π
from `1 to `n in P , i.e., a shortest path in P from some point on `1 to some point on `n.
Path π is unique unless it is a straight horizontal path that can shift up/down. Note that a
shortest path in a polygon only bends at the polygon vertices. The vertices of polygon P are
endpoints of segments, and therefore the path π provides a precise 1.5D terrain, which we will
show is optimal for Problems 1, 3, and 4. (As discussed below, for Problem 2 (Collinearity)
we need a minimum link path instead of a shortest path, and the fact that a minimum link
path may bend at non-vertex points is why we can only achieve a 2-approximation.)

`1
`n

Figure 1 The input segments for the imprecise 1.5D terrain problem (solid) and the polygon P

(dashed).
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1 2 3 4 5 6 7 8 9 10 11 12

Figure 2 A shortest path terrain with five extreme plateaus (marked by squares).

I Theorem 1. A shortest path from `1 to `n in polygon P can be found in linear time and
provides an optimal 1.5D terrain for Problem 1 (Extrema), Problem 3 (Length), and Problem
4 (Steepness).

Proof. The shortest path from one segment to another in a simple polygon can be found in
linear time [5]. This algorithm needs a triangulation of the polygon. Thankfully, we do not
need Chazelle’s impractical linear time algorithm [4], since P is composed of trapezoids each
of which can be cut into two triangles.

As discussed above, the shortest path provides a 1.5D terrain. We must show that the
terrain is optimal. This is obvious for Problem 3 (Length). We next consider Problems 1
and 4.
Problem 1 (Extrema). Suppose the shortest path has k local extrema. We must prove
that this is optimal, i.e., that any 1.5D terrain has at least k extrema. The plateaus of
the leftmost point and rightmost point are extreme by definition. If k = 1 then there is
a single plateau (the shortest path is horizontal) and this is clearly optimal. So suppose
k > 1. Note that the extrema alternate between minima and maxima as we traverse the
path. Let pij be the rightmost point of the jth extreme plateau, lying on segment `ij for
j = 1, . . . , k − 1, and—since we want points where the path bends—let pik

be the leftmost
point of the rightmost extreme plateau.

We will show that any 1.5D terrain must include at least k extrema, the leftmost and
rightmost extrema plus at least k − 2 others, one between segments `ij−1 and `ij+1 for each
j, 2 ≤ j ≤ n− 1.

First, note that the points pij zig-zag, i.e., if pij is a minimum [maximum] then pij is
lower [higher] than pij−1 and pij+1 . We see this in Figure 2, for instance, where the point
on segment 6 is below the points on segments 3 and 9. Also, if pij

is part of a minimum
[maximum] plateau, then the angle above [below] the path at pij

is strictly convex, so (because
the path is shortest) pij

must be at the upper [lower] endpoint of its segment. Therefore, any
point on segment `ij is necessarily below [above] any point on segments `ij−1 and `ij+1 so
there must always be a local minimum [maximum] between segments `ij−1 and `ij+1 . Finally,
note that since these extrema must alternate between minima and maxima, the extremum
between `ij−1 and `ij+1 is distinct from the extremum between `ij

and `ij+2 . Thus, any 1.5D
terrain has at least k extrema, and the shortest path is an optimal solution for Problem 1.
Problem 4 (Steepness). We prove that the shortest path provides something stronger: it
minimizes the maximum steepness, and, subject to that, minimizes the second maximum
steepness, and so on. More formally, define the steepness vector of a 1.5D terrain to be
the vector of n − 1 steepness values obtained from the n − 1 edges of the terrain, sorted
in decreasing order (so that the maximum steepness value is first). Note that there might
be duplicate values. We say that one steepness vector s is lexicographically less than
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3:6 Computing Realistic Terrains from Imprecise Elevations

another steepness vector s′ if s 6= s′ and for the first index i where s differs from s′, we have
si < s′i.

I Proposition 2. A shortest path from `1 to `n in polygon P lexicographically minimizes the
steepness vector.

In order to prove Proposition 2, we first prove that a path that lexicographically minimizes
the steepness vector is locally shortest, i.e., cannot be shortened by any small perturbation:

B Claim 3. If a path π in P from `1 to `n lexicographically minimizes the steepness vector,
then it is locally shortest.

Proof. Suppose π bends at point pi, and suppose the convex angle is above pi (the other case
is symmetric). If pi is not at the top of its segment then moving pi upward would change the
steepness of the two incident edges, decreasing the larger steepness and (possibly) increasing
the smaller steepness, and thus lexicographically decreasing the steepness vector. Therefore,
π must be locally shortest at every bend. Furthermore, π must also be locally shortest at its
endpoints, otherwise the steepness of the incident edge could be decreased. J

Returning to the proof of Proposition 2, it is well-known that between any two points in
a simple polygon there is a unique locally shortest path, which is then the unique shortest
path. The same is true if the points are replaced by segments, with one exception when the
segments are parallel and the shortest path is a line segment orthogonal to the segments,
then this path may be shifted parallel to itself. In our situation, segments `1 and `n are
both vertical. If the shortest path from `1 to `n in P is unique, then it is the unique locally
shortest path, and therefore the unique path that lexicographically minimizes the steepness
vector by Claim 3. Otherwise, any shortest path from `1 to `n in P is a horizontal segment
so its steepness vector is 0, which is lexicographically minimum.

This completes the proof of Theorem 1. J

We now turn to Problem 2 (Collinearity) where the goal is to minimize the number of
links/bends. First note that the number of links is one more than the number of bends, so
the two versions are equivalent (unlike in 2.5D). We make use of a minimum link path in
polygon P from `1 to `n, which can be found in linear time using Suri’s minimum link path
algorithm [23]. (Suri’s algorithm finds a minimum link path from a source point to a target
point in a simple polygon, but, internally, it finds a minimum link path from a segment (a
visibility window) to the target point, so it can easily be extended to deal with source and
target segments.) This path may have bends that are not at the input line segments, but
each such bend b can be replaced by two bends at the line segments just before and after b.

I Theorem 4. A minimum link path π from `1 to `n in P can be found in linear time and
the points where π intersects the segments provide a 1.5D terrain with at most twice the
minimum number of bends.

Proof. The number of bends in π is clearly a lower bound, and each bend in π is replaced
by at most two bends in the terrain. J

3 Local extrema

We now turn to 2.5D terrains. The input is a set of 2D points, (x1, y1), (x2, y2), . . . , (xn, yn),
a triangulation of these points, and a vertical range (bi, ti) for each i = 1, . . . , n. The problem
is to choose zi with bi ≤ zi ≤ ti so that the resulting precise 2.5D terrain with vertices
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(xi, yi, zi) has the desired property. Note that we allow input triangulations that do not
include all the convex hull edges of the input 2D points (to model triangulating a general
shape). In this section we consider Problem 1, minimizing the number of local extrema.

Gray et al. [12] showed that this problem is NP-hard for 2.5D terrains. Therefore, we
will examine a special case where we have a triangulation of a polygon, i.e., all points are on
the boundary of the triangulation.

I Theorem 5. There is an O(n4) time dynamic programming algorithm to minimize the
number of extrema for imprecise 2.5D terrains when the input triangulation is a triangulation
of a polygon.

The following claim shows that we can restrict to a discrete set of elevation values.

B Claim 6. Let E = {b1, t1, . . . , bn, tn} denote the set z-values of the bottom and top
endpoints of the input intervals. Then there exists an optimal solution z∗ so that z∗i ∈ E for
all i = 1, . . . , n.

Proof. Consider any optimal solution z∗. Suppose there are k > 0 elevation values not in E
(multiple points can share the same elevation value). Let v be the largest elevation value that
is not in the set E and let V denote the set of points with elevation v. We will show that
we can modify the solution to shift all the points of V upward to an elevation value from E

(thus reducing k) while keeping the solution optimal and not changing any other elevation
values. Therefore, we can apply induction on k in order to obtain an optimal solution with
all elevations in E.

Let w denote the smallest value from E that is greater than v. This exists since if pi is a
point whose elevation is the chosen value v then v < ti and ti ∈ E. Note that there are no
points with elevations between v and w, by the definitions of v and w. We will move the
points of V up to have elevation w. Since w is the smallest value from E that is greater than
v, this new solution is feasible. Also, we have decreased k. Let W denote the set of points
with elevation w (not including the moved points of V ). First suppose that W is empty.
Then the total ordering of the points (by z-value) has not changed, so the extrema have not
changed, and the new solution is optimal.

Next, suppose that W is not empty. To show that the new solution is optimal, we will
prove that any extremum in the new terrain resulted from at least one extremum from
the original precise terrain (the terrain corresponding to z∗). The extrema that are not at
elevation w in the new terrain are clearly extrema in the original terrain as well, so we will
focus on the extrema at elevation w. Let M ⊆ V ∪W be such an extremum in the new
terrain. We will focus on the case that M is a local maximum, since the case of a local
minimum can be argued similarly.

In the new terrain, every point that is adjacent to M has an elevation value less than v.
If M only consists of points of V , then M is clearly a local maximum present in the original
terrain as well. Otherwise, some points from W ∩M form at least one local maximum in the
original terrain.

Therefore, for every extremum M in the new terrain, there exists a subset of M repre-
senting an extremum in the original terrain. Therefore, the new terrain has at most as many
extrema as the original one, and must be optimal. J

We will now describe the algorithm. Label the vertices around the polygon p1, . . . , pn in
clockwise order. For each edge pipj of the triangulation with i < j, we define a subproblem
Si,j(zi, αi, βi, zj , αj , βj). This records the minimum number of internal extreme plateaus for
the subpolygon pi, . . . , pj where zi ∈ E is the elevation for pi, αi ∈ {T, F} records whether
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pj

pk

pi

S1
S2

Figure 3 Splitting subproblem Si,j into S1 := Si,k (yellow) and S2 := Sk,j (pink).

there are above (higher) elevations connected to pi’s plateau, βi ∈ {T, F} records whether
there are below (lower) elevations connected to pi’s plateau, and similar for j. Here “internal”
means that we do not count the plateau(s) of pi and pj . It is easy to add those plateaus
into the count, since pi’s plateau is a local extremum in Si,j iff ¬αi ∨ ¬βi (i.e., there are no
higher elevations connected to its plateau or there are no lower elevations connected to its
plateau) and similarly for pj . Furthermore, they are in the same plateau iff zi = zj .

The algorithm computes all Si,j entries using dynamic programming. Initialize by setting
Si,j(zi, αi, βi, zj , αj , βj) to ∞ when the parameters are incompatible, meaning that a z value
is outside its interval, or the α, β values contradict the z values, e.g., αi = F but zj > zi, etc.

We solve for Si,j(zi, αi, βi, zj , αj , βj) for compatible parameter values, starting with
smaller values of j − i before larger values. When j = i+ 1, there are only two points (i.e.,
the subpolygon is an edge), and the number of internal extrema is zero.

For j > i + 1, there is a (unique) triangle pi, pk, pj with i < k < j. Our goal is to
combine solutions to the two subproblems Si,k and Sk,j for various z, α, β values. See Figure
3. Si,k inherits zi. Sk,j inherits zj . For zk, we try all values in E (the same value in both
subproblems). The above/below values are not simply inherited, since, for example, a T
value for αi in Si,j can come from a F value in Si,k if zj provides the above elevation.

To simplify notation, let S1 be Si,k and S2 be Sk,j . Let α1
i be the α-value(s) of pi in

S1, let α1
k be the α-value(s) of pk in S1, and similarly for the β values and for S2. We have

αi ≡ α1
i ∨ (zj > zi). This tells us which values of α1

i to try. Similarly for β1
i and α2

j , β
2
j .

We next specify which above/below values to try for pk in the two subproblems. We
will consider all possibilities for the final above/below values αk, βk of pk in Si,j . Namely,
(T, T ), (T, F ), (F, T ), (F, F ). We have αk ≡ α1

k ∨ α2
k, i.e., there are elevations above pk’s

plateau in Si,j iff there are elevations above pk’s elevation in S1 or in S2. This tells us which
values of α1

k and α2
k to try for a given choice of αk. Similarly for βk.

Finally, we set Si,j to be the minimum value, among all these choices, obtained as
S1 + S2 + δ where δ ∈ {0, 1} is 1 iff pk’s plateau is an extremum distinct from the plateaus
of pi and pj , i.e., iff (¬αk ∨ ¬βk) ∧ (zk 6= zi) ∧ (zk 6= zj).

The final minimum number of local extrema is obtained by taking the best of all the S1,n

values, after adding 0, 1, or 2 extrema for p1 and pn as appropriate.
The algorithm is correct because we have considered all possibilities for the two subprob-

lems.

Runtime. There are O(n) edges pipj in the triangulation, and for each, we consider O(n2)
elevations and above/below values, for a total of O(n3) subproblems. To solve a subproblem
for Si,j we try O(n) values for zk and a constant number of combinations of above/below
values. Thus the runtime of the algorithm is O(n4).



Anna Lubiw and Graeme Stroud 3:9

[0, 1/3]

{0}

{1}

y = 1

y = 1
3

y = 0

Figure 4 Proving that minimizing the number of bends is not always equivalent to minimizing the
number of patches. The central point (drawn with a black square) is the only one with a non-trivial
z-interval, viz. [0, 1/3].

{0}

{1}

z = 1/3

{0}

{1}

Figure 5 Solutions, with colours indicating the patches, and heavy lines indicating the bends:
(top) if we place the center point (drawn with a square) at the top end of its elevation interval we
get 5 patches (optimal) and 7 bends; (bottom) if we place the center point at the bottom end of its
elevation interval, we get 6 patches and 6 bends (optimal).

4 Coplanar features

In this section, we explore Problem 2, minimizing the number of patches/bends in a 2.5D
imprecise terrain. First, we give a 5-approximation algorithm for a triangulation in a strip (as
shown in Figure 6). Then, we show that the general case is NP-complete for both objectives.

In general, these two objectives are not equivalent. Figure 4 shows an input in which all
points have fixed elevations except for the central point p which has elevation range [0, 1/3].
As shown in Figure 5: if p is placed at the upper elevation, 1/3, then the resulting precise
terrain has 5 patches and 7 bends; if p is placed at the lower elevation, 0, then the resulting
precise terrain has 6 patches and 6 bends; and if p is placed at any other elevation in (0, 1/3),
then the resulting precise terrain has no co-planar triangles, thus 11 patches and 13 bends.

For a triangulation of a polygon, minimizing the number of patches is equivalent to
minimizing the number of bends. More precisely, in any solution, the number of patches is
one more than the number of bends: If a solution has B bends, then the bends, which are
chords of the polygon, partition the polygon into B+ 1 regions, and these regions are exactly
the patches.

4.1 An algorithm for a strip triangulation

A strip triangulation is a special case of a polygon triangulation in which the polygon vertices
lie on two horizontal lines, see Figure 6.

I Theorem 7. There is a poly-time 5-approximation algorithm for the problem of minimizing
the number of bends/patches when the input is restricted to a strip.

CGT
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The run-time of the algorithm depends on the run-time for linear programming, which
we use as a subroutine. See the end of the section for further details.

Since a strip triangulation is a special case of a triangulation of a polygon, minimizing
the number of bends is equivalent to minimizing the number of patches. We describe the
algorithm in terms of bends.

Let the triangles along the strip be T1, . . . , TN , where N = n− 2. We first greedily find
the maximum index j such that triangles T1, . . . , Tj can be coplanar. To test a given j, use
a linear program whose variables are the z values of the imprecise points and the coefficients
A,B,C of the plane z = Ax+By + C that the triangles should lie in. Find the maximum
j using binary search. The linear program gives precise elevations that make T1, . . . , Tj

coplanar.
Note that any precise terrain for T1, . . . , Tj+1 must have at least one bend. Let k > j

be the minimum index such that triangle Tk shares no vertices with Tj . The algorithm
will recurse on triangles Tk, . . . , TN . It remains to fix the elevations of the vertices that lie
between Tj and Tk. Observe that the situation is as shown in Figure 6: the last edge of Tj

is ab; the first edge disjoint from ab is pq which is the first edge of Tk; and all intermediate
triangles Tj+1, . . . , Tk−1 include vertex a (without loss of generality, assume a and p lie on
the top side of the strip). Note that the elevations of a and b have been fixed by the first
greedy step, and the elevations of p and q will be fixed by the recursive call. By induction,
it suffices to choose elevations for the remaining vertices, the ones that lie strictly between b
and q along the bottom of the strip, so that the resulting precise terrain on T1, . . . , Tk−1 is a
5-approximation of the optimum.

Observe that triangles Tj+2, . . . , Tk−3 form a fan F between apex a (with fixed elevation)
and base edges (with imprecise elevations) on the bottom of the strip. Two adjacent triangles
in this fan are coplanar iff their base edges are collinear. This reduces the problem to a 1.5D
imprecise terrain problem in the xz-plane through the bottom of the strip. We use the linear
time algorithm from Theorem 4 to find a 2-approximation for the minimum number of bends.

For an input I with n vertices, the algorithm runs in time O(n logn) times the run-time
for linear programming with O(n) variables, O(n) constraints and coefficients that are the
x, y-coordinates given in I.

Proof of correctness. Let OPT be an optimum solution and let B∗ be the number of bends
in OPT on edges up to and including pq. Let B be the number of bends on these edges
produced by the above algorithm. Let s∗ be the minimum number of bends for internal edges
of the fan F . Then we have: B∗ ≥ 1 + s∗ since there is at least 1 bend before Tj+1, and s∗
bends within F ; and B ≤ 5 + 2s∗, since there are five bends outside F (on the labelled edges
in Figure 6) and at most 2s∗ inside F by Theorem 4. Thus 5B∗ ≥ 5 + 5s∗ ≥ B. Applying
induction proves the approximation ratio is correct for the whole input.

Tj
Tk

Tj+1

a p

qe2 e3e1

e4

e5

b

Figure 6 The first iteration of the algorithm. Fan F is colored dark orange and does not include
the three pale orange triangles. The planar patch T1, . . . , Tj is indicated with hatched blue lines.
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4.2 NP-hardness for the general setting

We show that the objective of minimizing the number of patches is NP-complete for the case
of a general triangulation without holes, using a reduction from Monotone Rectilinear Planar
3-SAT. The same reduction shows that minimizing the number of bends is NP-complete.

I Theorem 8. The following problem is strongly NP-complete: Given an input to the
imprecise 2.5D terrain problem in which the triangulation boundary is the convex hull of the
points, and given a number k, is there a choice of elevations such that the resulting precise
2.5D terrain has at most k patches [or at most k bends].

We first prove that the problem lies in the class NP by showing that a non-deterministic
guess for the patches/bends can be verified in polynomial time using linear programming.
For minimizing the number of bends, the procedure is as follows: Non-deterministically select
k of the edges to be the ones with bends. The other edges will be called the non-bent edges.
For each non-bent edge e, define linear programming variables ae, be, ce, with the intended
meaning that the triangles on both sides of e lie on the same plane aex+ bey + z + ce = 0.
Also define linear programming variables zi for all imprecise points i. A solution in the
feasible region for the following linear program will be a 2.5D terrain with at most k bends.

bi ≤ zi ≤ ti for all i
for all non-bent edges e, let i, j, k, l be the indices of the imprecise points that form the
two triangles sharing this edge. Then we want the points to be coplanar, so:
• aexi + beyi + zi + ce = 0
• aexj + beyj + zj + ce = 0
• aexk + beyk + zk + ce = 0
• aexl + beyl + zl + ce = 0

Since linear programming can be solved in polynomial time, this is a non-deterministic
polynomial time algorithm. For the patches problem, we can similarly non-deterministically
choose the disjoint patches of triangles, and then solve for the z-values using linear program-
ming.

We next show that the problem is complete for the class NP.

Reduction details. The reduction will be from the NP-complete problem Monotone Rec-
tilinear Planar 3-SAT [6]. In this variant of 3-SAT, each clause has either three positive
literals or three negative literals, and the input includes a planar representation where each
variable v is represented by a thin vertical rectangle along the line x = 0, each positive
[negative] clause is represented by a thin vertical rectangle at a positive [negative, resp.]
x-coordinate, and there are horizontal line segments joining each clause rectangle to the
rectangles of the variables in the clause. We modify the representation by shrinking each
clause rectangle to a square that is connected to its three literals via three “wires” created
from the horizontal segments—the middle one remains horizontal, the bottom one bends to
enter the clause rectangle from the bottom, and the top one bends twice to enter the clause
rectangle from the far side. See Figure 7. For n variables and m clauses, the representation
can be on an O(m)×O(n+m) grid.

Given an instance of Monotone Rectilinear Planar 3-SAT Φ, we will construct an imprecise
2.5D terrain.

CGT



3:12 Computing Realistic Terrains from Imprecise Elevations

Figure 7 An instance of Monotone Rectilinear Planar 3-SAT, modified so the clauses have fixed
height. The corresponding 3-SAT formula is C1 ∧ C2 ∧ C3 ∧ C4 where, for example, C1 = v1 ∨ v2 ∨ v3

and C2 = ¬v2 ∨ ¬v3 ∨ ¬v4.

(0, yv + 1, [0, 0])

(1
2
, yv +

1
2
, [1

2
, 1
2
])

(1
2
, yv − 1

2
, [0, 0])

(0, yv − 1, [0, 0])

(0, yv, [0, 0])(−1, yv, [−1, 0])

(a) A top view of the variable gadget. (b) A 3D depiction of the gadget (false setting).

Figure 8 The variable gadget.

(x, y, [x, 0]) ∀x < 0 (x, y, [0, x]) ∀x ≥ 0

x = 0

Figure 9 Variable component.
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w

u v

(x+ 1/3, x− 1/3, [1/3x, x+ 1/3])

(x, y, [0, x])

(a) A top view of the clause gadget.

w

u
v

(x+ 1/3, x− 1/3, [1/3x, x+ 1/3])

(x, y, [0, x])

(b) A 3D depiction of the clause gadget.

Figure 10 Clause gadget for positive literals.

Variable gadget and component. The variable gadget for variable v, shown in Figure 8,
consists of four triangles: two selector triangles (in white); a true triangle (green striped),
which we force onto the plane x = z; and a false triangle (checkered), which we force onto the
horizontal plane z = 0. The z-interval of the leftmost vertex of the gadget extends between
the two planes, which permits the two selector triangles to be coplanar with the true triangle
or with the false triangle. Thus, if the variable gadget is limited to two patches [or to one
bend], then the selector triangles “select” a true/false value for the variable. The gadget for
variable v is placed inside v’s input rectangle—see Figure 8a for the exact x, y-coordinates
and z-intervals.

To model the wires in the input, we expand v’s variable gadget to a variable component
by constructing chains of path triangles as shown in Figure 9. The associated z-intervals
are large enough to permit all path triangles to be coplanar with v’s true triangle (lying
in the plane x = z) or with v’s false triangle (lying in the horizontal plane z = 0). If the
variable component is limited to two patches [or to one bend], then the choice made by the
selector triangles is transmitted to all the path triangles.

Clause gadget. The gadget for clause c, shown in Figure 10a and 10b, consists of three
triangles sharing a centre vertex and joining the three final vertices of the chains corre-
sponding to the variables in the clause. The z-interval of the central vertex is strictly above
the z = 0 plane for a positive clause, and strictly above the x = z plane for a negative clause.
Therefore, for a positive [negative] clause, if all three chains are in the z = 0 plane [the x = z

plane] (corresponding to setting the literals false), then the three triangles of the clause
gadget must form three patches. However, by making the z-interval of the central vertex
large enough, we ensure that if at least one chain lies in the other plane (corresponding to
setting the literal true), then the central vertex may be chosen to lie in the plane of the other
three vertices, thus creating one coplanar patch out of the three clause triangles.

Completing the triangulation. The triangulation T constructed so far has holes and its
outer boundary is not convex. Suppose T has bounding box B. Let E be the empty region
inside B but outside T . We will add points and triangles to fill in E, thereby obtaining a
triangulation whose boundary is the convex hull of its points. Add a new vertex at every
integer xy-grid point inside E. Assign these vertices the precise elevation zero. Add the grid
edges inside E. This partitions E into grid squares, plus empty pentagons near vertex gadgets,
and empty triangles near clause gadgets. See Figure 11. Add one new spike vertex inside
each such region, and triangulate the region into spike triangles formed by connecting the
spike vertex to each vertex of its region. Each spike vertex is assigned a precise z-coordinate

CGT
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Figure 11 A portion of the final construction showing how spike triangles (in blue) fill in the
triangulation.

at least four times lower than anything in T .
By this choice of z, each spike triangle must form one patch by itself, i.e., no spike triangle

can be coplanar with an adjacent triangle. (A detailed proof of this can be found in the
Master’s thesis of the second author [22].) The full reduction from the 3-SAT instance in
Figure 7 is shown in Figure 12.

Correctness. Note that this construction takes polynomial time. In particular, since the
input for Monotone Rectilinear Planar 3-SAT lay on an O(m)×O(n+m) grid, the coordinates
we construct are polynomially bounded.

I Lemma 9. Let k = 2n+m+ s, where s is the number of spike triangles. Then there is a
satisfiable truth-value assignment for Φ if and only if there is a selection of elevations z that
creates a terrain with at most k patches.

Proof. Suppose there is a satisfiable truth-value assignment for Φ. Choose elevations that put
the variable component of each true variable in the x = z plane and the variable component
of each false variable in the z = 0 plane. This creates 2n patches. Since each clause has at
least one true literal, we can choose the elevation of the centre vertex of each clause gadget
so that the clause gadget uses one patch. This creates m patches. Finally, each spike triangle
is one patch, so the total number of patches is 2n+m+ s = k.

For the other direction, suppose there is a precise terrain with at most k patches. Each
spike triangle forms one patch, each variable component forms at least two patches, and each
clause gadget forms at least one patch (note that variable components do not share edges
with clause gadgets). Thus each variable component must use two patches (thus forcing the
three outer vertices of each clause gadget to respect the true/false choices), and each clause
gadget must use one patch (thus requiring at least one of its literals to be true). J

A similar argument proves that this reduction also works for bends:

I Lemma 10. Let k = n+ S, where S is the number of edges shared between two triangles
where at least one of them is a spike triangle. Then there is a satisfiable truth-value assignment
for Φ if and only if there is a selection of elevations z that creates a terrain with at most k
bends.
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Figure 12 The imprecise 2.5D terrain constructed from the instance of 3-SAT in Figure 7.

5 Surface area

We show that the surface area of an imprecise 2.5D terrain can be minimized using Second
Order Cone Programming (SOCP) [2, Section 4.4.2] which is an extension of Linear Pro-
gramming, with additional constraints of the form ‖Ax+ b‖ ≤ c>x+ d, where ‖ · ‖ represents
the Euclidean (L2) norm. More precisely:

I Definition 11. A Second Order Cone Program (a SOCP) is an optimization problem
of the following form:

Input:
m,n, n1, . . . , nm, k ∈ N
Ai ∈ Rni×n, bi ∈ Rni , ci ∈ Rn, di ∈ R for all i = 1, . . . ,m.
E ∈ Rk×n, f ∈ Rk, w ∈ Rn

Output: x ∈ Rn

Objective:

minimize w>x
subject to ‖Aix+ bi‖ ≤ c>i x+ di i = 1, . . . ,m

Ex = f

Second Order Cone Programs can be solved with additive error ε in time polynomial
in the size of the input and log( 1

ε ) using interior point methods [2, Section 4.4.2]. This is
efficient, although not polynomial time.

CGT
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To model minimizing the surface area of an imprecise 2.5D terrain as a SOCP, we use
variables zi, i = 1, . . . , n for the elevations, and the linear constraints bi ≤ zi ≤ ti to ensure
that each elevation value is within its interval. For each triangle T , a variable sT will upper
bound the area of T , via the constraint area(T ) ≤ sT . Then minimizing the linear objective
function

∑
T∈T sT guarantees that the total surface area is minimized.

We only need to show that area(T ) ≤ sT is a valid SOCP constraint. If T has imprecise
vertices p1, p2, p3, then area(T ) is 1

2‖(p2−p1)× (p3−p1)‖, where × is cross product. Because
x- and y-coordinates of the vertices are fixed, (p2 − p1)× (p3 − p1) is a linear function of the
z variables.

6 Min max steepness

We show that minimizing the maximum steepness of an imprecise 2.5D terrain can be
formulated as a Second Order Cone Program (as defined in the previous section). The
steepness of triangle T lying on the plane z = ATx + BT y + CT is the L2 norm of the
gradient vector (AT , BT ), i.e., ‖(AT , BT )‖.

As above, we use variables zi for the elevations, together with the linear constraints
bi ≤ zi ≤ ti. For each triangle T , we introduce variables AT , BT , CT representing the
coefficients of the plane containing T , as captured by the constraints zi = ATxi +BT yi +CT

for each vertex (xi, yi, zi) of T . Finally, we add constraints ‖(AT , BT )‖ ≤ F for one new
variable F . Then minimizing F will minimize the maximum steepness.

7 Conclusion

For imprecise 1.5D terrains, we gave linear time exact algorithms for three objectives, but
could only achieve a 2-approximation for minimizing the number of bends. We believe that
minimizing the number of bends for an imprecise 1.5D terrain is weakly NP-hard. Is the
problem fixed parameter tractable in the number of bends?

There are two very natural special cases of the 2.5D imprecise terrain problem that we
have not addressed. The Delaunay triangulation is the triangulation of choice for many
GIS applications. Do any of the problems become easier for a Delaunay triangulation?
Our NP-hardness proof for minimizing the number of patches/bends does not apply to
Delaunay triangulations, nor does the NP-hardness proof of Gray et al. [12] for minimizing
local extrema.

Another special case of practical import is when all the imprecise elevation intervals have
the same length. Again, our NP-hardness proof does not apply. The NP-hardness proof of
Gray et al. [12] uses two interval lengths, one positive and one zero (i.e., some vertices are
given precisely). Does the restriction to equal-length elevation intervals make any of the
problems easier?

Another direction worth exploring is imprecise 2.5D terrains when the triangulation is
not fixed, so the input consists only of imprecise points, and the problem is to find precise
points and a triangulation for the given objective. Even if the points are given precisely,
choosing the best triangulation can be NP-hard, as shown by De Kok et al. [7] for minimizing
the number of extrema. Are any of the other objectives NP-hard when the triangulation
is not fixed, either for precise or imprecise points? Minimizing the number of patches is
closely related to the following terrain simplification problem: given a large set P of points
with imprecise elevation intervals, select a subset S of the points, precise elevations for the
points in S, and a triangulation of S—thus determining a precise terrain T on S—so that for
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any point in P \ S, its imprecise elevation interval intersects T . In other words, every point
of P \ S can be given a precise elevation and added to the terrain so that all its incident
triangles are coplanar.
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