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Abstract
Let T be a two-dimensional table with each cell weighted by a nonzero positive number. A
StreamTable visualization of T represents the columns as non-overlapping vertical streams and the
rows as horizontal bands such that the intersection between a stream and a band is a rectangle
with area equal to the weight of the corresponding cell. To avoid large wiggle of the streams, it is
desirable to keep the consecutive cells in a stream to be adjacent. The difference between the area
of the bounding box containing the StreamTable and the sum of the weights of T is referred to as
the excess area. We attempt to optimize various StreamTable aesthetics (e.g., minimizing excess
area, or maximizing cell adjacencies in streams).

If the row permutation is fixed and the row heights are given, then we give an O(rc)-time
algorithm to optimize these aesthetics, where r and c are the number of rows and columns,
respectively.
If the row permutation is fixed but the row heights can be chosen, then we discuss a technique to
compute a StreamTable with small area and required cell adjacencies by solving a quadratically-
constrained quadratic program, followed by iterative improvements. If the row heights are
restricted to be integers, then we prove the problem to be NP-hard.
If the row permutations can be chosen, then we show that it is NP-hard to find a row permutation
that optimizes the area or adjacency aesthetics.
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1 Introduction

Proportional area charts and cartographic visualizations commonly represent data values
as geometric objects. The table cartogram [10] is a brilliant way to visualize tables as
cartograms, where each table cell is mapped to a convex quadrilateral with area equal to the
cell’s weight. Furthermore, the visualization preserves cell adjacencies and the quadrilaterals
are packed together in a rectangle with no empty space in between (e.g., see Figure 1(e)).
However, since the cells in a table cartogram are represented with convex quadrilaterals, it
may sometimes become difficult to follow the rows and columns [14]. This motivated us to
examine the scenario where each row is represented with a horizontal band (i.e., a region
bounded by two horizontal lines) and the cells in each row are represented with axis-aligned
rectangles inside the corresponding band. A Streamgraph is one such example where often
the columns (instead of rows) are presented as bands.

Given a set of variables, a streamgraph visualizes how their values change over time by
representing each variable with a flowing river-like stream (e.g., an x-monotone polygon).
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Figure 1 (a) A streamgraph. (b) A table T . (c) A StreamTable for T . (d) A StreamTable
visualization with smooth streams. (e) A table cartogram for T .

Figure 2 A grid map of the USA [8] and the corresponding StreamTable for the population of
the states in 2010.

The width of the stream at a timestamp is determined by the value of the variable at that
time. Figure 1(a) illustrates a streamgraph with five variables. Streamgraphs are often used
to create infographics of temporal data [5], e.g., box office revenues for movies [3], various
statistics or demographics of a population over time [15], etc. In this paper, we introduce
StreamTable that extends this idea of a streamgraph to visualize tables or spreadsheets.
Figure 2 shows a grid map of the USA [8] and the corresponding StreamTable for the
population of the states in 2010. We now formally define a StreamTable.

1.1 StreamTable
Let T be an r × c table with r ≥ 1 rows and c ≥ 2 columns, where each cell is weighted by a
nonzero positive number. A StreamTable visualization of T is a partition of an axis-aligned
rectangle R into r consecutive horizontal bands that represent the rows of T , where each
band is further divided into not necessarily adjacent rectangles to represent the cells of
its corresponding row. A column q of T is thus represented by a sequence of rectangles
corresponding to the cells of q, which we refer to as a stream. Furthermore, a StreamTable
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Figure 3 (a) A table. (b) A StreamTable with no excess area and 2 splits. (c) A StreamTable
with non-uniform row heights, non-zero excess area, but no splits. (d) A StreamTable with no excess
area and 1 split (obtained by reordering rows).

must satisfy the following properties.

P1. The left side of the leftmost stream (resp., the right side of the rightmost stream) must
be aligned to the left side (resp., right side) of R.

P2. For each cell of T , the area of its corresponding rectangle in the StreamTable must be
equal to the cell’s weight.

Property P1 ensures an aesthetic alignment with the row labels. Property P2 provides an area
proportional representation of the table cells. Figure 1(b) illustrates a table and Figure 1(c)
illustrates a corresponding StreamTable. The bands (rows) are shown in dotted lines and
the partition of the bands are shown in dashed lines. Figure 1(d) illustrates an aesthetic
visualization of the streams after smoothing the corners.

Note that a StreamTable may contain rectangular regions that do not correspond to any
cell. We refer to such regions as empty regions and the sum of the area of all empty regions
as the excess area. While computing a StreamTable, a natural optimization criterion is to
minimize this excess area. However, minimizing excess area may sometimes result into split
or disconnected streams. Figure 3(b) illustrates a StreamTable with zero excess area, where
the consecutive rectangles for column c2 are not adjacent (i.e., no two consecutive rectangles
of c2 share a common boundary point). If a pair of cells are consecutive in a column but
the corresponding rectangles are nonadjacent in the stream, then they split the stream. To
maintain the stream connectedness, it is desirable to minimize the number of such splits.
As illustrated in Figure 3(c)-(d), one may choose non-uniform row heights or reorder the
rows to optimize the aesthetics. Such reordering operations also appear in matrix reordering
problems [16] where the goal is to reveal clusters in matrix data. StreamTable computation
also relates to floorplanning [6, 19] and area-universal rectangular layout problems [4, 7], where
the horizontal adjacencies are not mandatory but vertical adjacencies must be preserved.

It is an intriguing question to study how StreamTable compares to Streamgraphs when it
comes to human interpretation, perception and task performances. However, in this paper,
our focus is entirely on computing a StreamTable by minimizing some natural optimization
functions such as excess area and number of splits.

In the rest of the paper, we associate the terms ‘rows’ and ‘columns’ of an input table
with ‘bands’ and ‘streams’ of its corresponding StreamTable, respectively.

1.2 Our contribution
We examine StreamTable from a theoretical perspective and explore several variants consid-
ering the following two questions.

CGT
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Question 1 (StreamTable with no Split, Minimum Excess Area, and Fixed Row
Ordering). Given an r × c table T , can we compute a StreamTable for T in polynomial
time with no splits and minimum excess area? Note that in this problem, the StreamTable
must respect the row ordering of T .

If the row heights are restricted to be integers, then we show that finding a minimum
excess area no-split StreamTable is NP-hard (Section 2.2.2). In general, the problem of
computing a no-split StreamTable with minimum excess area can be modeled leveraging
a quadratically-constrained quadratic program, and a solution computed by non-linear
programming solver may be iteratively improved by adjusting the row heights. However,
this only provides a heuristic solution (Section 2.2.1). While Question 1 remains open, if
the input additionally specifies an ordered set (h1, . . . , hr) of nonzero positive numbers to be
chosen as row heights, then we can compute a StreamTable with minimum excess area in
O(rc) time (Section 2.1). Since choosing a fixed row height helps to obtain a fast algorithm
and to compare the cell areas more accurately, we examined whether one can leverage the
row ordering to further improve the StreamTable aesthetics.

Question 2 (Row-Permutable StreamTable with Uniform Row Heights). Given a
table T and a non-zero positive number δ > 0, can we compute a StreamTable in polynomial
time by setting δ as the row height, and minimizing the excess area (or, the number of
splits)? Note that while answering this question, the row ordering can be chosen.

We show that Question 2 is NP-hard (Section 3) in the following two settings: first,
computing a StreamTable with no excess area and minimum number of splits is NP-hard,
and second, computing a StreamTable with no splits and minimum excess area is NP-hard.
The following table summarizes the results.

Table 1 Summary of the results.

StreamTable with Fixed Row
Ordering and Variable
Row Heights

Row-Permutable
StreamTable with
Uniform Row Heights

Constraint: no-split
Minimization: excess area

Open; but computable in O(rc) time
if row heights are given (Th. 2),
and NP-hard if row heights are
restricted to integers (Th. 3)

NP-hard (Th. 4)

Constraint: no excess area
Minimization: num. of splits

Computable (if it exists) in O(rc)
time, trivial NP-hard (Th. 5)

2 StreamTable with no split, min. excess area, fixed row order

In this section we compute StreamTables by respecting the given row ordering of the input
table. We first explore the case when the row heights are given, and then the case when the
row heights can be chosen.

2.1 Fixed row heights
Let T be an r × c table and let (h1, . . . , hr) be an ordered set of nonzero positive numbers to
be chosen as row heights. We now introduce some notation for the rectangles and streams
in the StreamTable. Let wi,j be the weight for the (i, j)th entry of T , where 1 ≤ i ≤ r and
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1 ≤ j ≤ c, and let Ri,j be the rectangle with height hi and width (wi,j/hi). Let ai,j and bi,j

be the x-coordinates of the left and right side of Ri,j .
We now show that a StreamTable R for T with no splits and minimum excess area can

be constructed using a greedy algorithm. For simplicity, we first describe the high-level steps
of the algorithm and prove that the algorithm can produce a StreamTable with no-split and
minimum excess area. We next show that these high-level steps can be implemented in O(rc)
time.
Algorithm G (Greedy-StreamTable)
Input: An r × c table T , where r ≥ 1 and c ≥ 2.
Output: A StreamTable R with no-split and minimum excess area.

Step 1. Draw the rectangles Ri,1, where 1 ≤ i ≤ r, of the first column such that they
are left aligned.
Step 2. For each j < c, draw the jth stream by minimizing the sum of x-coordinates
ai,j , and ensure that the stream remains connected, i.e., place the rectangles Ri,j so that
no splits appears in the stream.
Step 3. Draw the rectangles Ri,c of the last column by minimizing the maximum
x-coordinate over bi,c, and ensuring that the rectangles are right aligned.

For every column j, let A(R, j) be the orthogonal polygonal chain determined by the left
side of Ri,j . Similarly, we define (resp., B(R, j)) for the right side of Ri,j . We now have the
following lemma.

▶ Lemma 1. Given an r × c table T , where r ≥ 1 and c ≥ 2, Algorithm G computes a
StreamTable R with no splits and minimum excess area.

Proof. We employ an induction on the number of columns of R. For c = 2, it is straightfor-
ward to verify the lemma. We now assume that the lemma holds for every table T with j

columns where j ≥ 2. Consider now a table with c columns, where c ≥ 3. We now show that
the StreamTable R computed by G coincides with an optimal StreamTable R∗, i.e., with no
splits and minimum excess area.

We first show that the first two streams of any optimal StreamTable R∗ can be replaced
with the corresponding streams of R. To observe this first note that the stream for the
first column must be drawn left-aligned, and since the rectangle heights are given, the right
side of the streams B(R, 1) must coincide with B(R∗, 1). Consider now the left sides of the
second streams. If A(R, 2) does not coincide with A(R∗, 2), then there must be non-zero
area between them. Let A be an orthogonal polygonal chain constructed by taking the left
envelope of these two chains. In other words, for each row, we choose the part of the chain
that have the minimum x-coordinate. Since the streams for R and R∗ do not contain any
split, the stream determined by A is a no-split stream. Since the sum of x-coordinates is
smaller for A, the polygonal chain A(R, 2) must coincide with A. Thus the right side of the
stream, i.e., the polygonal chain B(R, 2), must remain to the left of B(R∗, 2).

Consider now an r × (c − 1) table T ′ which is obtained by treating the polygonal chain
B(R, 2) as B(R, 1). By induction, G provides a StreamTable R′ with no splits and minimum
excess area. We can obtain the StreamTable R by replacing the first stream of R′ with the
two streams constructed using Steps 1 and 2 of G. If there exists an optimal StreamTable R∗

with a smaller excess area than that of R, then there must be a StreamTable with a smaller
excess area than that of R′, a contradiction. ◀

We now show that Algorithm G can be implemented in O(rc) time.

CGT



8:6 StreamTable: An Area Proportional Visualisation for Tables with Flowing Streams

Implementation of Step 1. It is straightforward to compute the drawing of the first
column in O(r) time.

Implementation of Step 2. To compute Step 2, i.e., to draw the jth stream, we assume
that the drawings of the previous streams are given. We compute two sequences of rectangles
Rt and Rb, and then process them to find the stream for the jth column.

We construct Rt from top-to-bottom (e.g., see Figure 4(a)), and refer to a placement of
the rectangle R(i, j) in Rt as Rt(i, j). We first place Rt(1, j) starting at b1,j−1, and then
greedily place Rt(i, j), where i > 1, such that each rectangle lies as much to the left as
possible maintaining the adjacency with the previously placed rectangle. The adjacency
between subsequent rectangles is broken when the bi,j−1 is larger than the x-coordinate of the
right side of the previously placed rectangle Rt(i−1, j). We construct Rb from bottom-to-top
symmetrically (Figure 4(b)). It is straightforward to compute Rt and Rb in O(r) time. We
now construct the stream of the jth column by taking for each i, the rectangle with the larger
starting x-coordinate among Rt(i, j) or Rb(i, j) (breaking ties arbitrarily), which also takes
O(r) time. Intuitively, the choice of taking the rectangle with the maximum x-coordinate
is to satisfy the no-split constraint. We now show that this construction results in no-split
streams and minimizes the sum of x-coordinates ai,j (as required for Step 2). Figure 4(c)
illustrates the resulting drawing of the jth stream.

Let R(i, j) be a rectangle in R. We call R(i − 1, j) a parent of R(i, j) if ai−1,j = bi,j , as
shown in Figure 4(c). Similarly, we call R(i + 1, j) a parent of R(i, j) if ai+1,j = bi,j . By our
construction, if a rectangle (in Rt or Bb) does not have a parent, then it must start exactly
at the ending x-coordinate of the previous rectangle in the same row. We refer to such a
rectangle as root rectangle.

Rt(1, 2)

Rt(2, 2)

Rt(3, 2)

Rt(4, 2)

Rt(5, 2)

a1,2

Rb(1, 2)

Rb(2, 2)

Rb(3, 2)

Rb(4, 2)

Rb(5, 2)

(a) (b)

ai−1,j
R(i− 1, j)

bi,j
R(i, j)

R(i− 1, j)

(c)

Figure 4 (a) The computation of Rt (purple). An arrow is drawn from a child to its parent. (b)
The computation of Rb (green). (c) The drawing of the jth stream computed from Rt and Rb.

Let A(R, j) be the left side of the jth stream. We now show that A(R, j) determines a
no-split stream and minimizes the sum of x-coordinates.

The constructed jth stream is a no-split stream: Suppose for a contradiction that
R(i − 1, j) and R(i, j) are not adjacent, and without loss of generality assume that R(i − 1, j)
comes from Rt, i.e., R(i − 1, j) = Rt(i − 1, j). The case when R(i − 1, j) = Rb(i − 1, j) is
symmetric considering a vertical flip. We now distinguish two cases depending on whether
R(i, j) = Rt(i, j) or R(i, j) = Rb(i, j).

Case 1 (R(i, j) = Rt(i, j)): Since each rectangle in Rt lies as much to the left as possible
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maintaining the adjacency with the previously placed rectangle, R(i − 1, j) and R(i, j) must
be adjacent.

Case 2 (R(i, j) = Rb(i, j)): Since R(i, j) and R(i − 1, j) are not adjacent, either the
starting x-coordinate of Rb(i, j) is larger than the right side of Rt(i − 1, j) (Figure 5(a)), or
the ending x-coordinate of Rb(i, j) is smaller than the left side of Rt(i − 1, j). In the former
scenario, the starting x-coordinate of Rb(i − 1, j) must be larger than that of Rt(i − 1, j),
which contradicts the assumption that R(i − 1, j) comes from Rt. In the latter scenario, the
starting x-coordinate of Rt(i, j) must be larger than that of Rb(i, j), which contradicts the
assumption that R(i, j) comes from Rb.

(a) (b)

R(i− 1, j) = Rt(i− 1, j)

R(i, j) = Rb(i, j)

R(i− 1, j) = Rt(i− 1, j)

R(i, j) = Rb(i, j)

Figure 5 Illustration for Case 2.

The constructed jth stream minimizes the sum of ai,j: Suppose for a contradiction
that there exists a no-split drawing R′ for the jth stream such that the sum of x-coordinates
of A(R′, j) is smaller than that of A(R, j). Then there must exist a rectangle R(i, j) in
R such that the starting x-coordinate of R(i, j) is larger than the corresponding rectangle
R′(i, j) in R′. In the following we show that such a scenario cannot exist.

If R(i, j) is a root rectangle, then the starting x-coordinate of R(i, j) cannot be larger
than that of R(i, j). Hence we may assume that R(i, j) has a parent. We follow the parent
repeatedly until we reach a root R(q, j). Without loss of generality assume that q > i. The
case when q < i is symmetric. Since R(q, j) is a root rectangle, the starting x-coordinate of
R(q, j) cannot be larger than that of R′(q, j). The ending x-coordinate of the child rectangle
R(q −1, j) is exactly the starting x-coordinate of R(q, j). Therefore, the starting x-coordinate
of R(q − 1, j) cannot be larger than that of R′(q − 1, j). By following this chain of constraints
determined by the child relations, we observe that the starting x-coordinate of R(i, j) cannot
be larger than that of R′(i, j). This contradicts our initial assumption that the starting
x-coordinate of R(i, j) is larger than that of R′(i, j).

Step 1 Step 2 Step 3

Figure 6 A simple run of the greedy algorithm, computing a no-split minimum excess area
StreamTable with 5 rows and columns.

Implementation of Step 3. It is straightforward to compute Step 3 by first following
Step 2 and then moving the rectangles rightward to make them right aligned (Figure 6).

The following theorem summarizes the result of this section.

CGT
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Figure 7 StreamTables of a Winter Olympics dataset (left) using a linear program with row
height proportional to the row sum, and (right) using Gurobi with a fixed total height and with
corner smoothing.

▶ Theorem 2. Given an r × c table T and a height for each row, a StreamTable R for T

with no splits and minimum excess area can be computed in O(rc) time such that R respects
the row ordering of T .

2.2 Variable row heights
We now show how to formulate a system of linear equations to compute a StreamTable for
T with no splits and minimum excess area such that the height of the ith row is set to hi,
where 1 ≤ i ≤ r. Here h1, . . . , hr are fixed constants. Let di,j be a variable to model the
adjacency between Ri,j and Ri+1,j , where 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ c. We minimize the

excess area:
r∑

j=1

c−1∑
k=1

hj(aj,k+1 − bj,k), subject to the following constraints.

1. aj,1 = aj+1,1 and bj,c = bj+1,c, where j = 1, . . . , r −1. This ensures StreamTable property
P1.

2. bj,k − aj,k = (wj,k/hj), where j = 1, . . . , r and k = 1, . . . , c. This ensures property P2.
3. aj,k ≤ dj,k ≤ bj,k and aj+1,k ≤ dj,k ≤ bj+1,k, where 1 ≤ j ≤ r − 1 and 1 ≤ k ≤ c. This

ensures that there are no splits in the streams.
Since h1, . . . , hr are fixed constants, the above system with the constraint that the variables
must be non-negative can be modeled as a linear program, e.g., see Figure 7 (left).

We now consider the case when h1, . . . , hj are variables. Here the objective and constraint
functions yield a quadratically-constrained quadratic program. Note that scaling down
the height of a StreamTable by some δ ∈ (0, 1] and scaling up the width by 1/δ do not
change the excess area. Therefore, a non-linear program solver may end up generating
a final StreamTable with bad aspect ratio. Hence we suggest to add another constraint:
h1 + . . . + hk = H, where H is the desired height of the visualization. Figure 7 (right) shows
an example (not necessarily optimal) solution computed using a non-linear program solver
Gurobi [13].

2.2.1 Local improvement
We now show how a non-optimal StreamTable may be improved further by examining
each empty cell individually, while deciding whether that cell can be removed by shrinking
the height of the corresponding row. By Ei,j we denote the empty rectangle between the
rectangles Ri,j and Ri,j+1. We first refer the reader to Figure 8(a)–(b). Assume that we
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want to decide whether the empty cell Ei,j(= E2,4) can be removed by scaling down the
height of the second row. The idea is to grow the rectangles to the left (resp., right) of Ei,j

towards the right (resp., left) respecting the adjacencies and area.

R1,1 R1,2 R1,3 R1,4 R1,5

E2,2 E2,4

R3,4R3,1 R3,2R3,3 R3,5

(0,0)

Wc

`2,4

(a)
(b)

(c)

E2,3

(Wc, 0)

HnHc

`2,1 e2,1 `2,2 e2,2 `2,3 `2,4 `2,5

Wc

`2,4

(d)

Hn

`2,1 e2,1 `2,2 e2,2 `2,3 `2,4 `2,5

L

Hc

E2,1

G2,2

R2,3 R2,4 R2,5

Figure 8 (a) A StreamTable with width Wc and height Hc. (b) Removal of the empty rectangle
E2,4 (c)–(d) Illustration for computing the new height Hn of the second row.

Now consider a rectangle Ri,k before Ei,k (e.g., R2,2 before E2,4 in Figure 8(a)). Let
Gi,k be the rectangle determined by the ith row with left and right sides coinciding with the
left and right sides of Ri,1 and Ri,k, respectively. Figure 8(a) shows G2,2 using a rectangle
with thick boundary and falling pattern. Let ℓi,k be the length of Gi,k. Let Ai,k be the
initial area of Gi,k, and our goal is to keep this area fixed as we scale down the height of
the ith row. The height of Gi,k is defined by f(ℓi,k) = Ai,k/ℓi,k. Since the rectangles of the
(i − 1)th and (i + 1)th rows do not move, f(ℓi,k) does not split the (k + 1)th stream as long
as ℓi,k is upper bounded by the right sides of Ri−1,k+1 and Ri+1,k+1. Figure 8(c) plots these
functions, where Hc is the current height of the second row. The height function for G2,2 is
drawn in thick purple in the interval [ℓ2,2, min{b1,3, b3,3}], where b1,3 and b3,3 are the right
sides of R1,3 and R3,3, respectively.

We construct such functions also for all the empty rectangles Ei,k, where 1 ≤ k < j.
These are labeled with ei,k. Finally, we construct these functions symmetrically for the
rectangles that appear after Ei,j . Let L be an interval corresponding to the intersection
of the projections of all the plots determined by these height functions on a vertical line
(Figure 8(c)). Let Ξ be a horizontal slab determined by the L, which is shaded in red. We
then compute the amount by which the ith row can be shrunk by determining the topmost
intersection (if any) in Ξ, as illustrated in Figure 8(d). If no such intersection point exists,
then we can shrink the row by an amount equal to the length of the interval L.

We iterate over the empty rectangles as long as we can find an empty rectangle to improve
the solution, or to a maximum number of iterations. However, this only provides a heuristic
algorithm, and thus Question 1 remains open.

CGT
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2.2.2 Restricting row heights to integers
We now show that if the row heights are restricted to be positive integers, then finding a
minimum-area no-split StreamTable respecting a given height H is NP-hard.

▶ Theorem 3. Given a table T and a positive integer H, it is NP-hard to compute a
minimum-area no-split StreamTable of height H with row heights as integers respecting the
row ordering of T .

Proof. We reduce the NP-hard problem Clique [12], where the input is a graph G and a
positive integer k and the goal is to find a clique of size k, i.e, a set of k vertices that are
pairwise adjacent. The problem remains NP-hard even when 1 < k < n. Given an instance
G of the Clique problem with n vertices and m edges, we construct a table T with n rows
and m columns as follows.

1. For each edge e ∈ EG, we create a column called an edge column, and label it by e.
2. We insert an additional column at the left and right sides of the table and also between

every pair of adjacent columns. We refer to these columns as line columns. Each cell of a
line column has a weight of ϵ = 1

n(m+1) .
3. For each vertex v ∈ VG, we create a row and assign it the label v.
4. We now partition each cell Tv,e into two cells (Figure 9), as follows.

a. If vertex v is an end point of edge e, then the weight of the left and right cells are 2
and 4, respectively. We refer to these as a (2, 4)-group.

b. Otherwise, the weight of the left and right cells are 2 and 2, respectively. We refer to
these as a (2, 2)-group.

It now suffices to show that G admits a clique of size k if and only if there exists a no-split
StreamTable of height H = (n + k) and width at most (6m − 2

(
k
2
)
) + (m + 1)ϵ, where the

row heights are integers.
Assume first that G has a clique C of size k. We then draw the StreamTable such that

each row corresponding to the vertices of C has a height of 2 and every other row has a
height of 1 (Figure 9). For each edge column e = (v, w), there can now be two cases: (A) If
v ∈ C and w ∈ C, then Tv,e and Tw,e will be (2, 4) groups and all the other cells in this edge
column are (2, 2) groups. Hence this edge column can be drawn with a width of 4 units. (B)
If at least one of v and w are not in C, then without loss of generality assume w ̸∈ C. Since
Tw,e is a (2, 4)-group and the row height for w is 1, we can draw the cells in Tw,e using a
width of 6 units. It is straightforward to draw the remaining cells of this edge column within
the same width such that we obtain a no-split stream.

Since we have k mutually adjacent vertices, we will have
(

k
2
)

edge columns with width 4
and (m−

(
k
2
)
) edge columns with width 6. Thus the total width is at most 6(m−

(
k
2
)
)+4

(
k
2
)

=
(6m − 2

(
k
2
)
). Together with the line columns the width is at most (6m − 2

(
k
2
)
) + (m + 1)ϵ.

Assume now that there exists a StreamTable for T with height (n + k) and width
(6m − 2

(
k
2
)
) + (m + 1)ϵ, where all the row heights are integers.

Since the height of T is (n + k), the number of rows with height 2 or more is at most k.
Let C ′ be the set that consists of the vertices corresponding to these rows. We now establish
a lower bound on the width of a cell. Let e = (v, w) be an edge in G. Assume that C ′

includes both v and w. Since k < n, there must be at least one row of height 1. Let z be the
corresponding vertex. The width required for the corresponding cell Tz,e is at least 4 units.
If C ′ does not include both v and w, then without loss of generality assume that w ̸∈ C ′.
Since the row corresponding to w is of height 1, the width required for the corresponding
cell Tw,e is at least 6 units.
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Figure 9 Illustration for the proof of Theorem 3. Given a clique {b, e, d}, one can construct a
StremTable with

(3
2

)
edge columns of width 4, where the remaining edge columns are of width 6.

The line columns are shown in thick vertical lines.

We now show that the vertices in C ′ are mutually adjacent in G. If C ′ does not correspond
to a clique, then the total width of the table must be at least 6(m − m′) + 4m′ − n(m + 1)ϵ,
where m′ is the number of edges of G with both endpoints in C ′ and the negative term
n(m + 1)ϵ compensate for the shift that may occur due to the line columns. For example,
consider the sequence of rectangles corresponding to a line column. The rectangle at the
first row allows the rectangle on the second row to move to the left or right by at most ϵ.
Therefore, the stream corresponding to a line column may span a horizontal interval of size
nϵ, and for the (m + 1) line columns, this shift is bounded by n(m + 1)ϵ.

Since ϵ = 1
n(m+1) , the width is at least 6(m−m′)+4m′ −1 = 6m−2m′ −1. If C ′ does not

correspond to a clique, then m′ is smaller than
(

k
2
)
. Therefore, 6m − 2m′ − 1 ≥ 6m − 2(

(
k
2
)

−
1) − 1 = 6m − 2

(
k
2
)

+ 1. Since (m + 1)ϵ = 1
n , we have 6m − 2

(
k
2
)

+ 1 > 6m − 2
(

k
2
)

+ (m + 1)ϵ.
We thus reach a contradiction to our initial assumption on the width of T . ◀

3 StreamTable with uniform row heights and variable row order

In this section we show that computing StreamTables with no splits (resp., minimum excess
area) while minimizing the excess area (resp., number of splits) by reordering the rows is
NP-hard.

3.1 NP-hardness — no split, minimum excess area
▶ Theorem 4. Given a table T and a non-zero positive number δ > 0, it is NP-hard to
compute a StreamTable with no splits and minimum excess area, where each row is of height
δ and the ordering of the rows can be chosen.

Proof. We reduce the NP-complete problem Betweenness [18], where the input is a set of
ordered triples over r elements, and the problem is to decide whether there exists a total
order σ of these r elements, with the property that for each given triple, the middle element
in the triple appears somewhere in σ between the other two elements.

CGT
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Let S be a set of c integer triples (an instance of Betweenness) over r elements (integers),
where r, c ≥ 5. We now construct an r × (4c + 1) table T (Figure 10(a)), as follows:

1. For every triple t ∈ S, we make a column (labeled with t). We refer to these columns as
triple columns. Each of these columns will later be split into three more columns. For
every element e, we create a row (labeled with e).

2. We insert an additional column at the left and right sides of the table and also between
every pair of adjacent triple columns. We refer to these columns as line columns. Each
cell of a line column has a weight of ϵ = 1

r(c+1) .
3. For every triple t and row i, we further partition the cell (t, i) into three cells and assign

weights based on a parameter w to be chosen later, as follows:
a. If i is the left element of t, then the weight of the left, middle and right cells are 2w

3 , w
6

and w
6 , respectively.

b. If i is the right element of t, then the weight of the left, middle and right cells are
w
6 , w

6 and 2w
3 , respectively.

c. If i is the center element of t, then the weight of the left, middle and right cells are
w
6 , 2w

3 and w
6 , respectively.

d. Finally, if i does not belong to t, then the weight of the left, middle and right cells are
5w
12 , ϵ and 5w

12 , respectively.

w
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Figure 10 (a) A table T obtained from a set of triples {(2, 1, 3), (3, 4, 5), (1, 4, 5), (2, 4, 1), (5, 2, 3)}.
Here the thick black lines represent the line columns. (b)–(c) Illustration for the required width for
different row orderings.

We set δ, i.e., the height of each row, to be 1. It now suffices to show that the Between-
ness instance S admits a total order σ, if and only if there exists a StreamTable with no
splits and at most kw

12 + (rc − k)( w
4 − ϵ) excess area, where k is the number of cells satisfying

(3a), (3b) or (3c).
Assume first that S admits a total order σ and we show how to compute the required

StreamTable. We draw the rectangles of each line column on top of each other (vertically
aligned) and allocate a width of (w + w

12 ) for the triple columns. We now show how to
complete the drawing of the rectangles of the three streams corresponding to a triple column
within the allocated width without any split.

If we draw the left (right) rectangle in each cell as much to the left (right) as possible
within the allocated width for the cell, then we obtain two no-split streams. We now show
that the middle rectangles of the cells can be drawn to obtain a no-split stream. If a cell
satisfies conditions (3a) or (3b), then we make its middle rectangle adjacent to the largest
among the other two rectangles. Since we order the rows by σ, no pair of cells in a triple
column where one satisfies (3a) and the other satisfies (3b) can be adjacent.
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If a cell satisfies condition (3c) or (3d), then we will leverage the ordering σ to show that
the middle rectangle can always be drawn so that it touches the middle rectangles of the
(upper and lower) adjacent cells. In fact, for a cell that satisfies (3c), its middle rectangle is
large enough to satisfy the required adjacencies. Figure 10(b) illustrates such adjacencies
using a schematic representation.

For a cell q that satisfies (3d), if one of its adjacent cells x satisfies (3a) and the other
cell z satisfies (3b), then we do not have a position for the middle rectangle of q that would
make it adjacent to the other middle rectangles of x and z. However, since we order the rows
by σ, we must have a cell y′ that satisfies (3c), i.e., q cannot be adjacent to both x and z. In
all other cases, finding a position for the middle rectangle of q is straightforward so that it
touches the middle rectangles of the adjacent cells.

The excess area for each cell satisfying (3a), (3b) or (3c) is w
12 , and for each cell satisfying

(3d) is ( w
12 + (w − 5w

6 − ϵ)) = ( w
12 + w

6 − ϵ) = w
4 − ϵ. Therefore, the total excess area is

kw
12 + (rc − k)( w

4 − ϵ), where k is the number of cells satisfying (3a), (3b) or (3c). Figure 11
illustrates the construction for the table from Figure 10(a).

1

2

4

5

2,1,3 3,4,5 1,4,5 2,4,1 5,2,3

3

Figure 11 A StreamTable for the T , where σ = {3, 1, 4, 2, 5}.

We now show that if there is a StreamTable for T with at most kw
12 +(rc−k)( w

4 −ϵ) excess
area, then the corresponding row ordering will yield the total order for the Betweenness
instance. Suppose for a contradiction that for some triple t = (x, y, z), the cell y satisfying
(3c) does not appear between the cells satisfying (3a) and (3b) (Figure 10(c)). Without loss
of generality assume that x satisfies (3a) and z satisfies (3b). We now show that there exists
a cell satisfying (3d) with at least ( w

3 − r(c + 2)ϵ) excess area. Note that the left rectangle of
x and the right rectangle of z each has a width of 2w

3 .

If x and z are consecutive in the triple column, then they must require a width of 4w
3 , and

thus at least ( w
3 − r(c + 1)ϵ) excess area for sufficiently small ϵ. Since each line column

allows a cell to move by at most rϵ, the r(c + 1)ϵ term accommodates the potential
contribution of the (c + 1) line columns. Consequently, there must be a cell satisfying
(3d) in this triple column with at least ( w

3 − r(c + 1)ϵ) − rϵ = ( w
3 − r(c + 2)ϵ) excess area.

If x and z are not consecutive, then they may have one or more cells in between that
satisfy (3d). Therefore, the middle rectangles of weight ϵ can help the right rectangle of z

to start at most rϵ units earlier. Hence, the width of the cell is at least ( 4w
3 −rϵ−r(c+1)ϵ).

Here the term rϵ corresponds to the contribution of the middle rectangles of the cells, and
the r(c + 1)ϵ term accommodates the potential contribution of the (c + 1) line columns.
Thus the excess area is at least ( 4w

3 − rϵ − r(c + 2)ϵ) − 5w
6 > ( w

3 − r(c + 2)ϵ).
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For every triple t, exactly one cell satisfies (3a), one cell satisfies (3b), and one cell satisfies
(3c). Since we assumed r ≥ 5, there exists a cell q in t that satisfies (3d) and is adjacent to
a cell satisfying either (3a) or (3b). Without loss of generality assume that q is adjacent
to a cell p where p satisfies (3a). The left rectangle of p and the right rectangle of q are of
size 2w

3 and 5w
12 , respectively. Therefore, the width of p is at least ( 2w

3 + 5w
12 − r(c + 1)ϵ),

and the excess area is at least ( w
12 − r(c + 1)ϵ) for the cells with weight w and at least

( w
4 − ϵ − r(c + 1)ϵ) for the cells satisfying (3d).

We now compute the total excess area. If there is a triple t = (x, y, z) such that the cell y

satisfying (3c) does not appear between the cells satisfying (3a) and (3b), then there is a cell
satisfying (3d) with an excess area of ( w

3 − r(c + 2)ϵ). Every other cell in this triple column
is forced to have an excess area of at least (w

3 − r(c + 3)ϵ) ≥ ( w
12 − r(c + 2)ϵ). Similarly, if

the cell y satisfying (3c) appears between the cells satisfying (3a) and (3b), then every cell
of weight w in this column has an excess area of at least ( w

12 − r(c + 2)ϵ) and every cell of
weight ( 5w

12 − ϵ) has an excess area of at least ( w
4 − ϵ − r(c + 1)ϵ). We set ϵ = 1

kr(c+2) . Now
the total excess area is at least

(w

3 − r(c + 2)ϵ) + k( w

12 − r(c + 2)ϵ) + (rc − 1 − k)(w

4 − r(c + 2)ϵ)

> (w

3 − 1) + (kw

12 − 1) + (rc − k)(w

4 − 1) − (w

4 − 1)

>
w

3 + kw

12 − 1 + (rc − k)(w

4 − 1) − w

12

= w

4 + kw

12 + (rc − k)w

4 − (rc − k) − 1.

For w > 4(rc−k)−4(rc−k)ϵ+4, this implies an excess area larger than kw
12 +(rc−k)( w

4 −ϵ),
a contradiction. ◀

3.2 NP-hardness — minimum number of splits, zero excess area
▶ Theorem 5. Given a table T and a non-zero positive number δ > 0, it is NP-hard to
compute a StreamTable with zero excess area and minimum number of splits, where each row
is of height δ and the ordering of the rows can be chosen.

Proof. We reduce the NP-complete problem Hamiltonian path in a cubic graph [11], where
the input is a graph G with n vertices and m edges such that every vertex is of degree 3, and
the problem is to decide whether there exists a total order of the vertices that determines a
Hamiltonian path, i.e., a simple path of size n, in G.

Let G be a graph with n vertices, i.e., an instance of the Hamiltonian path problem.
We now construct a table T , as follows.

1. For each edge e ∈ EG, we create a column called an edge column, and label it by e.
2. For each vertex v ∈ VG, we create a row and assign it the name v. For each edge column,

we assign each cell a weight w.
3. We now partition each cell Tv,e into three cells (Figure 12(a)–(b)), as follows.

a. If vertex v is an end point of edge e, then the weight of the left, middle and right cells
are 7

12 w, 1
12 w, and 4

12 w, respectively. We refer to these as an L group.
b. Otherwise, the weight of the left, middle and right cells are 4

12 w, 1
12 w, and 7

12 w,
respectively. We refer to these as an R group.
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Figure 12 (a) A cubic graph G. (b) A visual representation of the table T corresponding to G.
(c) Construction of a StreamTable from a given Hamiltonian path a, b, c, d, e, f .

It now suffices to show that G admits a Hamiltonian path if and only if there exists a
StreamTable for T with zero excess area and at most 4(n − 1) splits, where the height of
each row is δ = 1.

Assume first that G has a Hamiltonian path P . We then draw the StreamTable such
that each row has a height of δ, each row is drawn in the order of the Hamiltonian path,
and the cells within each row are drawn consecutively without leaving any gap in between
(Figure 12(c)). By construction of the StreamTable, for every pair of vertices that are
adjacent in P , the corresponding rows will be consecutive in the StreamTable. Consider a
pair of consecutive vertices v, z on P . For each edge column e, there can now be three cases:
(A) If e = (v, z), then Tv,e and Tz,e will consist of L groups and hence no splits will appear.
(B) If neither v nor z is an endpoint of e, then Tv,e and Tz,e will consist of R groups and
hence no splits will appear. (C) Otherwise, one of Tv,e and Tz,e will represent an L group
and the other is an R group, and hence a split will appear. Since G is cubic, there are exactly
two edges incident to v and two edges incident to w (other than the edge (v, w)) that can
generate splits. Therefore, the number of splits contributed by the rows representing v and

CGT



8:16 StreamTable: An Area Proportional Visualisation for Tables with Flowing Streams

w is 4. Thus the number of splits overall is 4(n − 1).
Assume now that there exists a StreamTable for T with zero excess area and at most

4(n − 1) splits, where each row is of height δ. Note that the height of each row is 1 and the
cells in an edge column are of weight w. Since there is no excess area, the edge columns
must be drawn inside a vertical slab, i.e., a region bounded by two vertical lines. Therefore,
a pair of adjacent L and R groups will generate a split. We now show that the row ordering
in the StreamTable determines a Hamiltonian path in G. Suppose for a contradiction that a
consecutive pair of rows exists in the StreamTable where the corresponding vertices are not
adjacent in G. Let a, b be such a pair of vertices. Then every L group of a will occupy a
horizontal interval shared with an R group of b, and vice versa. Hence this would contribute
to at least 6 splits. Since any pair of consecutive rows must contribute to at least 4 splits,
the number of splits will be at least 6 + 4(n − 2) = 4n − 2 > 4(n − 1). ◀

4 Conclusion

In this paper we have introduced StreamTable, which is an area proportional visualization
inspired by streamgraphs. We formulated algorithmic problems that need to be tackled
to produce aesthetic StreamTables and examined two aesthetic criteria – excess area and
number of splits.

We have shown that if row heights and row ordering are given, then a StreamTable with
no splits and minimum area can be computed via a linear program. However, the case when
the row ordering is given but the row heights can be chosen needs further investigation.
We only provided a quadratically constrained quadratic program to model the problem
and an NP-hardness proof when the row heights are constrained to be integers. A future
research direction can be to conduct a full-fledged experimental analysis of the proposed
approaches alongside innovating other heuristics to gain an understanding of the scalability
and performance trade-offs of these techniques. However, the original question remains open.
Open Problem 1: Given a table T and a positive integer H, does there exist a polynomial-
time algorithm to compute a minimum-area no-split StreamTable of height H that respects
the row ordering of T?

We also showed that if the row ordering can be chosen, then the problem of finding a
minimum-area or a minimum-split StreamTable is NP-hard. In this setting, it would be
interesting to find algorithms for computing zero-excess-area (resp., no splits) StreamTables
with good approximation on the number of splits (resp., excess area).
Open Problem 2: Design polynomial-time algorithms to find good approximation for
StreamTable aesthetics (excess area or number of splits) in both the fixed and variable row
ordering settings.

Similar aestheic criteria can be considered even beyond tabular data such as in area
propoortional circle packing [2] or community visualization in large networks [17]. Recently
a framework for ∃R-completeness of packing problems has been proposed in [1]. It would be
interesting to investigate ∃R-completeness in this context, where the rows need to be packed
inside a rectangle maintaining column adjacencies.
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