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Abstract
We study a problem on spreading points. Given a set P of n points sorted on a line L and a distance
value δ, we wish to move the points of P along L such that the distance of any two points of P is at
least δ and the maximum movement over all points of P is minimized. Using the greedy strategy,
we present an O(n) time algorithm for this problem. Further, we extend our algorithm to solve (in
O(n) time) the cycle version of the problem where all points of P are on a cycle C. Previously, only
weakly polynomial-time algorithms were known for these problems based on linear programming
(of n variables and Θ(n) constraints). In addition, we present a linear-time algorithm for another
similar facility-location moving problem, which improves on previous work.
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1 Introduction

We consider the following points-spreading problem. Given a set P of n points sorted on a
line L and a distance value δ ≥ 0, we wish to move the points of P along L such that the
distance of any two points of P is at least δ and the maximum movement over all points
of P is minimized. The above is the line version. We also consider the cycle version of the
problem, where all points of P are given sorted cyclically on a cycle (one may view C as a
simple closed curve). We wish to move the points of P on C such that the distance of any
two points of P along C is at least δ and the maximum movement over all points of P along
C is minimized. Note that since C is a cycle, the distance of any two points of C is defined
to be the length of the shortest path on C between the two points.

Both versions of the problem have been studied before. By modeling them as linear
programming problems (with n variables and Θ(n) constraints), Dumitrescu and Jiang [4]
gave the first-known polynomial-time algorithms for both problems. Since there only exist
weakly polynomial-time algorithms for linear programming [9, 10], it would be interesting to
design strongly polynomial-time algorithms for the points-spreading problem. In this paper,
we solve both versions of the problem not only in strongly polynomial time but also in O(n)
time (which is optimal). Our algorithms are based on a greedy strategy.

In addition, we consider a somewhat related problem, called the facility-location movement
problem, defined as follows. Suppose we have a set of k “server” points and another set of n

“client” points sorted on L. We wish to move all servers and all clients on L such that each
client co-locates with a server and the maximum moving distance of all servers and clients
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is minimized. Dumitrescu and Jiang [4] solved this problem in O((n + k) log(n + k)) time
(note that the algorithm works without assuming the servers and clients are given sorted on
L; but even if they are given sorted, their algorithm still runs in O((n + k) log(n + k)) time).
We present an O(n + k) time algorithm based on their approach.

1.1 Related work
The 2D (Euclidean) version of the points-spreading problem was proposed by Demaine et
al. [3] (also called “movement to independence” problem in [3, 4]). The problem in 2D is
NP-hard and an approximation algorithm was given in [3]; the algorithm was improved later
by Dumitrescu and Jiang [4].

The points-spreading problem is related to points dispersion problems which involve
arranging a set of points as far away from each other as possible subject to certain constraints.
For example, Fiala et al. in [6] studied such a problem in which one wants to place n

given points, each inside its own, prespecified disk, with the objective of maximizing the
distance between the closest pair of these points. The problem was shown to be NP-hard
[6]. Approximation algorithms were given for this problem by Cabello [1]. Dumitrescu and
Jiang [5] improved the approximation ratio and also proposed algorithms for the problem
in high-dimensional spaces. In fact, Fiala et al. [6] studied the dispersion problem in a
more general problem settings such as in other metric spaces. Another variation of the
dispersion problem is to select a subset of facilities from a set of given facilities to maximize
the minimum distance (or some other distance function) among all pairs of selected facilities
[11, 12]. The problem is generally NP-hard (e.g., in 2D) but polynomial time algorithms are
available in the one-dimensional space [11, 12]. In addition, Chandra and Halldórsson [2]
studied dispersion problems in other problem settings, e.g., locating a set of points such that
the sum of their distances to their nearest neighbor in the set is maximized.

Mehrdad Ghadiri and Sina Yazdanbod [8] studied a “min-sum” version of the points-
spreading problem where all points on a line, and the objective is to minimize the total sum
of the movements of all points. They gave an O(n log n) time algorithm for the problem.

The facility-location movement problem was first introduced by Demaine et al. [3] in
general graphs, where serves and clients are all located on vertices of the graphs. The
problem was proved to be NP-hard. A 2-approximation algorithm was presented in [3] for
this problem, and later it was shown that the 2-approximation ratio cannot be improved
unless P=NP [7]. Dumitrescu and Jiang [4] studied the geometric version of this problem
in the plane, and they showed that the problem is NP-hard to approximate within 1.8279.
Fixed parameter algorithms (with the number of facilities k as the parameter) were also
given in [4].

1.2 Our approach
To solve the line version of the points-spreading problem, essentially we first solve a “one-
directional” case of the problem in which points are only allowed to move rightwards, by
using a simple greedy algorithm. Suppose d is the maximum movement over all points in the
solution of the above one-directional case. Then, we show that an optimal solution to the
original problem can be obtained by shifting each point of P leftwards by the distance d/2
from its location in the above one-directional case solution.

To solve the cycle version of the problem, essentially we also first solve a one-directional
case in which points are only allowed to move counterclockwise on C. If d is the maximum
movement over all points in the solution of the one-directional case, then we also show that
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an optimal solution to the original problem can be obtained by shifting each point of P

clockwise by d/2. However, unlike the line version, the one-directional case of the problem
becomes more difficult on the cycle. One straightforward idea is to cut the cycle C at a
point of P (and extend C as a line) and then apply the algorithm for the one-directional
case of the line version. However, the issue is that the last point may be too close to or even
“cross” the first point if we put all points back on C. By observations, we show that if such a
case happens, we can run the line-version algorithm for another round and the second round
is guaranteed to find an optimal solution. Overall, the algorithm is still simple, but it is
challenging to discover the idea and prove the correctness.

To solve the facility-location movement problem, Dumitrescu and Jiang [4] presented
an O((n + k) log(n + k)) time algorithm using dynamic programming. By discovering a
monotonicity property on the dynamic programming, we improve Dumitrescu and Jiang’s
algorithm to O(n + k) time.

The rest of the paper is organized as follows. In Section 2, we present our algorithm for
the line version of the points-spreading problem. The cycle version of the problem is solved
in Section 3. Section 4 discusses our solution for the facility-location movement problem.
Section 5 concludes the paper.

2 The line version of the points-spreading problem

In the line version, the points of P are given sorted on the line L. Without loss of generality,
we assume L is the x-axis and P = {p1, p2, . . . , pn} is the set of points sorted by their
x-coordinates from left to right. For each index i ∈ {1, . . . , n}, let xi denote the location (or
x-coordinate) of pi on L. For any two locations x and x′ of L, denote by |xx′| the distance
between x and x′, i.e., |xx′| = |x − x′|.

Our goal is to move each point pi ∈ P to a new location x′
i on L such that the distance of

any pair of points of P is at least δ and the maximum moving distance, i.e., max1≤i≤n |xix
′
i|,

is minimized. For simplicity of discussion, we make a general position assumption that no
two points of P are at the same location in the input. The degenerate case can also be
handled by our techniques but the discussions would be more tedious.

We refer to a specification of the location of each point pi of P on L as a configuration. For
example, in the input configuration each pi is at xi. Let F0 denote the input configuration.
A configuration is feasible if the distance between any pair of points of P is at least δ.

Denote by dopt the maximum moving distance in any optimal solution. If the input
configuration F0 is feasible, then we do not need to move any point, implying that dopt = 0.
Since the points of P are sorted, we can check whether F0 is feasible in O(n) time by checking
the distance between every adjacent pair of points of P . If F0 is not feasible, then dopt > 0.
In the following, we assume F0 is not feasible, and thus dopt > 0.

We first present some observations, based on which our algorithm will be developed.

2.1 Observations
For any two indices i < j in {1, . . . , n}, define

w(i, j) = (j − i) · δ − |xixj |.

As discussed by Dumitrescu and Jiang in [4], there exists an optimal solution in which
the order of all points of P is the same as that in the input configuration F0. Based on this
property, we prove Lemma 1 regarding the value dopt.

CGT
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Figure 1 Illustrating our algorithm for computing the configuration F .

▶ Lemma 1. dopt ≥ max1≤i<j≤n
w(i,j)

2 .

Proof. Consider any optimal solution OPT in which the order of all points of P is the same
as that in F0. For each 1 ≤ i ≤ n, let x∗

i be the location of pi in OPT .
Consider any i and j with 1 ≤ i < j ≤ n. Our goal is to prove dopt ≥ w(i, j)/2.
Since the points of P in OPT have the same order as in F0, for each k with i < k ≤ j, we

have |x∗
k−1x∗

k| ≥ δ because OPT is a feasible solution. Hence, |x∗
i x∗

j | =
∑j

k=i+1 |x∗
k−1x∗

k| ≥
(j − i) · δ.

If |x∗
i x∗

j | − |xixj | ≤ 0, then |xixj | ≥ |x∗
i x∗

j | ≥ (j − i) · δ. Thus, w(i, j) ≤ 0. Since dopt > 0,
dopt ≥ w(i, j)/2 holds.

If |x∗
i x∗

j | − |xixj | > 0, then the difference of |x∗
i x∗

j | and |xixj | is due to the moving of pi

and pj . It is not difficult to see that max{|xix
∗
i |, |xjx∗

j |} ≥ (|x∗
i x∗

j | − |xixj |)/2 (the equality
happens when pi moves leftwards by distance (|x∗

i x∗
j | − |xixj |)/2 and pj moves rightwards by

the same distance). Since dopt ≥ max{|xix
∗
i |, |xjx∗

j |}, it holds that dopt ≥ (|x∗
i x∗

j | − |xixj |)/2.
Due to |x∗

i x∗
j | ≥ (j − i) · δ, we obtain that dopt ≥ w(i, j)/2.

The lemma thus follows. ◀

▶ Lemma 2. If there exist i and j with 1 ≤ i < j ≤ n and a feasible configuration F ′ in
which each point pk ∈ P moves rightwards to x′

k (i.e., xk ≤ x′
k) such that w(i, j) satisfies

w(i, j) = max1≤k≤n |xkx′
k|, then we can obtain an optimal solution by shifting each point of

P in F ′ leftwards by distance w(i, j)/2.

Proof. Let F ′′ denote the configuration obtained by shifting each point of P in F ′ leftwards
by distance w(i, j)/2.

Consider any point pk ∈ P . Let x′′
k denote the location of pk in F ′′, i.e., x′′

k = x′
k−w(i, j)/2.

In order to prove that F ′′ is an optimal solution, by Lemma 1, it is sufficient to show that
|xkx′′

k | ≤ w(i, j)/2, as follows.
Indeed, 0 ≤ x′

k − xk ≤ w(i, j), i.e., x′
k is at most w(i, j) to the right of xk. Therefore,

after pk is moved leftwards by w(i, j)/2 to x′′
k , x′′

k must be within distance w(i, j)/2 from xk.
Hence, |xkx′′

k | ≤ w(i, j)/2. The lemma thus follows. ◀

We call a feasible configuration that satisfies the condition in Lemma 2 a canonical
configuration (such as F ′ in Lemma 2). Due to Lemma 2, to solve the problem in linear time,
it is sufficient to find a canonical configuration in linear time, which is our focus below.

2.2 Computing a canonical configuration
In this section, we present a linear-time algorithm that can find a canonical configuration.
Comparing to the original problem, now we only need to consider the rightward movements.

Initially, we set x′
1 = x1. Then we consider the rest of the points p2, p3, . . . , pn from left

to right. For each i with 2 ≤ i ≤ n, suppose we have already moved pi−1 to x′
i−1. Then, we

set x′
i = max{xi, x′

i−1 + δ}, and move pi to x′
i. Refer to Fig. 1 for an example. The algorithm

finishes after all points of P have been considered. Clearly, the algorithm runs in O(n) time.
Let F ′ denote the resulting configuration (i.e., each pi is at x′

i).
In the following lemma, we show that F ′ is a canonical configuration.
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▶ Lemma 3. F ′ is a canonical configuration.

Proof. First of all, based on our way of setting x′
i for i = 1, 2, . . . , n, it can be easily seen

that every two points of P in F ′ are at least δ away from each other. Thus, F ′ is a feasible
configuration. Note that x′

i ≥ xi for any i ∈ {1, . . . , n}.
Next, we show that there exist i and j with 1 ≤ i < j ≤ n such that w(i, j) = dmax,

where dmax = max1≤k≤n |xkx′
k|.

Recall that dmax > 0. Suppose the moving distance of pj is the maximum, i.e., dmax =
|xjx′

j |. Let i be the largest index such that i < j and pi does not move in the algorithm (i.e.,
xi = x′

i). Note that such a point pi must exist as x1 = x′
1 and x′

j > xj .
For any point pk ∈ P , if pk is moved (rightwards) in F ′ (i.e., xk < x′

k), then according to
our way of setting x′

k, it must hold that x′
k − x′

k−1 = δ. By the definition of i, for each point
pk with k ∈ {i + 1, . . . , j}, pk is moved in F ′, and thus x′

k − x′
k−1 = δ. Therefore, we obtain

|x′
ix

′
j | = x′

j − x′
i =

∑
i+1≤k≤j

(x′
k − x′

k−1) = (j − i) · δ.

Since x′
i = xi and xj < x′

j , we have |xix
′
j | = |xixj | + |xjx′

j |. Hence, dmax = |xjx′
j | =

|xix
′
j | − |xixj | = (j − i) · δ − |xixj | = w(i, j).

This proves the lemma. ◀

Combining Lemmas 2 and 3, we conclude this section with the following theorem.

▶ Theorem 4. The line version of the points-spreading problem is solvable in O(n) time.

Remark: One may verify that our algorithm for computing the canonical configuration
F ′ essentially solves the following one-directional case of the line version problem: Move the
points of P rightwards such that any pair of points of P are at least δ away from each other
and the maximum moving distance over all points of P is minimized.

3 The cycle version of the points-spreading problem

In the cycle version, the points of P = {p1, p2, . . . , pn} are on a cycle C sorted cyclically, say,
in the counterclockwise order. We use |C| to denote the length of C. For any two locations
x and x′ on C, the distance between x and x′, denoted by |xx′|, is the length of the shortest
path between x and x′ on C. Clearly, |xx′| ≤ |C|/2. For each i ∈ {1, . . . , n}, we use xi to
denote the location of pi on C in the input. Our goal is to move each point pi ∈ P to a new
location x′

i such that the distance of any pair of two points of P on C is at least δ and the
maximum moving distance, i.e., max1≤i≤n |xix

′
i|, is minimized.

We assume |C| ≥ δ · n since otherwise there would be no solution. Again, for simplicity of
discussion, we make a general position assumption that no two points of P are at the same
location on C in the input.

As in the line version, we refer to a specification of the location of each point of P on C

as a configuration. A configuration is feasible if the distance between any pair of points of P

is at least δ. Let F0 denote the input configuration.
Denote by dopt the maximum moving distance in any optimal solution. If F0 is feasible,

then dopt = 0. We can also check whether F0 is feasible in O(n) time. If F0 is not feasible,
then dopt > 0. In the following, we assume F0 is not feasible, and thus dopt > 0.

To solve the cycle version of the problem, we extend our algorithm (and observations) for
the line version in Section 2. Namely, we first move all points of P on C counterclockwise to

CGT
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obtain a “canonical configuration”, and then shift all points clockwise. However, as will be
seen later, the problem becomes much more difficult on the cycle.

Consider any two locations x and x′ on C. We define C(x, x′) as the portion of C from
x to x′ counterclockwise. We use |C(x, x′)| to denote the length of C(x, x′). Note that
|xx′| = min{|C(x, x′)|, |C(x′, x)|}.

As in the line version, we first give some observations, based on which our algorithms
will be developed.

3.1 Observations
For any two indices i ̸= j in {1, . . . , n}, define

w(i, j) =
(
(n + j − i) mod n

)
· δ − |C(xi, xj)|.

In words, if i < j, then w(i, j) = (j − i) · δ − |C(xi, xj)|; otherwise, w(i, j) = (n + j − i) ·
δ − |C(xi, xj)|. Roughly speaking, w(i, j) measures the distance difference in the clockwise
direction for two points pi and pj . Since |C| ≥ δ · n, it can be verified that w(i, j) ≤ |C|.

As discussed by Dumitrescu and Jiang in [4], there exists an optimal solution in which
the order of all points of P is the same as that in the input configuration F0. Using this
property, we prove Lemma 5, which is analogous to Lemma 2 for the line version.

▶ Lemma 5. dopt ≥ max1≤i,j≤n
w(i,j)

2 .

Proof. Consider any optimal solution OPT in which the order of all points of P is the same
as that in the input configuration F0. For each 1 ≤ k ≤ n, let x∗

k be the location of xk in
OPT .

Consider any two indices i ̸= j in {1, . . . , n}. To prove the lemma, the goal is to show
that dopt ≥ w(i, j)/2. Depending on whether i < j, there are two cases. Below we only prove
the case i < j, and the other case is very similar.

First of all, we claim that |C(x∗
i , x∗

j )| ≥ (j − i) · δ. Indeed, consider any k ∈ {i + 1, . . . , j}.
Since OPT is an optimal solution, which is a feasible solution, |x∗

k−1x∗
k| ≥ δ holds. Because

|x∗
k−1x∗

k| = min{|C(x∗
k−1, x∗

k)|, |C(x∗
k, x∗

k−1)|}, we obtain that |C(x∗
k−1, x∗

k)| ≥ δ. Since
the order of the points of P in OPT is the same as that in F0, we have C(x∗

i , x∗
j ) =

∪j
k=i+1C(x∗

k−1, x∗
k) and |C(x∗

i , x∗
j )| =

∑j
k=i+1 |C(x∗

k−1, x∗
k)| ≥ (j − i) · δ. The claim is thus

proved.
In the sequel, we prove dopt ≥ w(i, j)/2 = ((j − i) · δ − |C(xi, xj)|) /2.
If |C(x∗

i , x∗
j )|−|C(xi, xj)| ≤ 0, then since |C(x∗

i , x∗
j )| ≥ (j−i)·δ, it holds that |C(xi, xj)| ≥

(j − i) · δ. Hence, w(i, j) ≤ 0, and it follows that dopt ≥ w(i, j)/2.
If |C(x∗

i , x∗
j )| − |C(xi, xj)| > 0, then the difference of |C(x∗

i , x∗
j )| and |C(xi, xj)| is due to

the moving of pi and pj . Because the order of the points of P in OPT is the same as that in
F0, the smallest moving distance of these two points happens when xi and xj move in opposite
directions (i.e., xi moves clockwise and xj moves counterclockwise) by the same distance
(|C(x∗

i , x∗
j )| − |C(xi, xj)|)/2. Therefore, we obtain max{|xix

∗
i |, |xjx∗

j |} ≥ (|C(x∗
i , x∗

j )| −
|C(xi, xj)|)/2. Since dopt ≥ max{|xix

∗
i |, |xjx∗

j |}, dopt ≥ (|C(x∗
i , x∗

j )| − |C(xi, xj)|)/2 holds.
Finally, because |C(x∗

i , x∗
j )| ≥ (j − i) · δ, we obtain dopt ≥ w(i, j)/2. ◀

Based on Lemma 5, we obtain the following lemma, which is analogous to Lemma 3 for
the line version.

▶ Lemma 6. If there exist i ̸= j in {1, . . . , n} and a feasible configuration F ′ in which each
point pk ∈ P is at location x′

k such that w(i, j) = max1≤k≤n |C(xk, x′
k)|, then we can obtain

an optimal solution by shifting every point of P in F ′ clockwise by distance w(i, j)/2.
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Proof. Let F ′′ denote the configuration obtained by shifting every point of P in F ′ clockwise
by distance w(i, j)/2.

Consider any point pk ∈ P . Let x′′
k denote the location of xk in F ′′. On the one

hand, |C(xk, x′
k)| ≤ w(i, j) since w(i, j) = max1≤k≤n |C(xk, x′

k)|. On the other hand, since
the above shifting moves pk from x′

k clockwise to x′′
k by distance w(i, j)/2 ≤ |C|/2 (recall

that w(i, j) ≤ |C|), it holds that either |C(xk, x′′
k)| ≤ w(i, j)/2 or |C(x′′

k , xk)| ≤ w(i, j)/2.
Consequently, |xkx′′

k | = min{|C(xk, x′′
k)|, |C(x′′

k , xk)|} ≤ w(i, j)/2.
The above shows that max1≤k≤n |C(xk, x′′

k)| ≤ w(i, j)/2, i.e., the maximum moving
distance over all points of P in F ′′ is no more than w(i, j)/2. By Lemma 5, F ′′ is an optimal
solution. The lemma is thus proved. ◀

We call a feasible configuration that satisfies the condition in Lemma 6 a canonical
configuration. In light of Lemma 6, to solve the problem in linear time, it is sufficient to find
a canonical configuration in linear time, which is our focus below.

3.2 Computing a canonical configuration
In this section, we present a linear-time algorithm that can find a canonical configuration.
Comparing to the original problem, now we only need to consider the counterclockwise
movements.

Recall that the points p1, p2, . . . , pn are ordered on C counterclockwise in the input
configuration F0. For convenience of discussion, we define coordinates for locations on C in
the following way. We define x1 as the origin with coordinate 0. For any other location x ∈ C,
the coordinate of x is defined to be |C(x1, x)|. Hence each location of C has a coordinate no
greater than |C|.

Our algorithm has two rounds. In the first round, we will use the same approach as for
the line version of the problem, and let F1 denote the resulting configuration. However, the
issue is that in F1 the new location of pn may be too close to p1 or pn may even “cross” p1,
which might make F1 not feasible. If pn does not cross p1 and pn is at least δ away from p1
in F1, then we will show that F1 is a canonical configuration. Otherwise, we will proceed
to the second round, which is to (starting from the configuration F1) consider all points
again from p1 and use the same strategy to set the new locations of the points (to ensure the
distance between pn and p1 is at least δ). We will show that the configuration F2 obtained
after the second round is a canonical configuration. The details are given below.

3.2.1 The first round
In the first round, we will move each point pi ∈ P from xi along C counterclockwise to a new
location x′

i. The way we set x′
i here is similar to that in the line version and the difference is

that we have to take care of the cycle situation. Specifically, x′
1 = x1, i.e., p1 does not move.

For each i ∈ {2, . . . , n}, suppose we have already moved pi−1 to x′
i−1, then we define x′

i as
follows:

x′
i =

{
xi if xi ≥ x′

i−1 + δ

(x′
i−1 + δ) mod |C| if xi < x′

i−1 + δ.
(1)

This finishes the first round of our algorithm. Denote by F1 the resulting configuration.
Note that if x′

i−1 +δ > |C|, then since xi ≤ |C|, according to Equation (1), x′
i = (x′

i−1 +δ)
mod |C|, which is equal to x′

i−1 + δ − |C|; in this case, we say that the counterclockwise
movement of pi crosses the origin x1.

CGT
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▶ Lemma 7. If pn does not cross x1 (= x′
1) in the first round of the algorithm and

|C(x′
n, x′

1)| ≥ δ, then F1 is a canonical configuration.

Proof. First of all, we show that F1 is a feasible configuration, i.e., the distance between
any two points of P in F1 is at least δ. Consider any two indices i and j. Without loss of
generality, assume i < j. Our goal is to show that |x′

ix
′
j | ≥ δ. To this end, it is sufficient to

show that |C(x′
i, x′

j)| ≥ δ and |C(x′
j , x′

i)| ≥ δ.
On the one hand, C(x′

i, x′
j) contains x′

i+1, implying that C(x′
i, x′

i+1) ⊆ C(x′
i, x′

j) and
thus |C(x′

i, x′
i+1)| ≤ |C(x′

i, x′
j)| (note that j = i + 1 is possible). According to our first round

algorithm (i.e., Equation (1)), it holds that |C(x′
i, x′

i+1)| ≥ δ. Thus, |C(x′
i, x′

j)| ≥ δ.
On the other hand, since pn does not cross x1 = x′

1, C(x′
j , x′

i) contains both x′
n and x′

1,
and in other words, C(x′

n, x′
1) ⊆ C(x′

j , x′
i). Due to |C(x′

n, x′
1)| ≥ δ, we obtain |C(x′

j , x′
i)| ≥

|C(x′
n, x′

1)| ≥ δ.
Therefore, F1 is a feasible configuration.
Let d′

max be the maximum counterclockwise movement over all points of P in the first
round, i.e., d′

max = max1≤k≤n |C(xk, x′
k)|. To show that F1 is a canonical configuration, we

also need to show that there exist i and j such that d′
max = w(i, j). In the following, we

will find two indices i and j with i < j such that d′
max = w(i, j). Recall that when i < j,

w(i, j) = (j − i) · δ − |C(xi, xj)|.
Since the input configuration F0 is not feasible, it must hold that d′

max > 0. Let j be the
index such that d′

max = |C(xj , x′
j)|. Let i be the largest index such that i < j and x′

i = xi.
Note that such an index i must exist since x1 = x′

1.
According to the definition of i, each point xk with i + 1 ≤ k ≤ j is moved in the first

round algorithm, which implies that |C(x′
k−1, x′

k)| = δ according to Equation (1). Hence,
we obtain |C(x′

i, x′
j)| =

∑j
k=i+1 |C(x′

k−1, x′
k)| = (j − i) · δ. On the other hand, since the

movement of pn does not cross x1 and pi does not move, the movement of pj does not cross
xi = x′

i. Thus, C(x′
i, x′

j) = C(xi, xj) ∪ C(xj , x′
j) and |C(x′

i, x′
j)| = |C(xi, xj)| + |C(xj , x′

j)|.
Therefore, we obtain d′

max = |C(xj , x′
j)| = |C(x′

i, x′
j)| − |C(xi, xj)| = (j − i) · δ −

|C(xi, xj)| = w(i, j).
We conclude that F1 is a canonical configuration. ◀

According to Lemma 7, if pn does not cross x1 = x′
1 in the first round and |C(x′

n, x′
1)| ≥ δ

in F1, then we have found a canonical configuration and our algorithm stops. Otherwise, we
proceed to the second round, as follows.

3.2.2 The second round
In the second round, we will move each point pi ∈ P from x′

i counterclockwise to a new
location x′′

i , defined as follows.
We first define x′′

1 . Recall that we proceed to the second round because either pn crosses
x1 = x′

1 in the first round or |C(x′
n, x′

1)| < δ. In either case we define

x′′
1 = (x′

n + δ) mod |C|. (2)

Hence, |C(x′
n, x′′

1)| = δ.
For each i = 2, 3, . . . , n, suppose pi−1 has been moved to x′′

i−1; then we move pi from x′
i

counterclockwise to x′′
i , with

x′′
i = max{x′

i, (x′′
i−1 + δ) mod |C|} (3)
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This finishes the second round of our algorithm. Let F2 be the resulting configuration.
In the sequel we show that F2 is a canonical configuration.

Recall that |C| ≥ n · δ. We first have the following observation on the first round of the
algorithm.

▶ Observation 8. There must be a point pi with i ∈ {2, . . . , n} such that pi does not move
in the first round of the algorithm (i.e., xi = x′

i).

Proof. Assume to the contrary that every point pi with i ∈ {2, . . . , n} is moved in the first
round. Then, by our first round algorithm (i.e., Equation (1)), |C(x′

i−1, x′
i)| = δ for each

2 ≤ i ≤ n. Hence, |C(x′
1, x′

n)| =
∑n

i=2 |C(x′
i−1x′

i)| = (n − 1) · δ. Further, since either pn

crosses x1 = x′
1 or |C(x′

n, x′
1)| < δ, we obtain that n · δ > |C|, which contradicts with the

fact that |C| ≥ n · δ. ◀

▶ Observation 9. If a point pi does not move in the second round, then for each point pj

with j ∈ {i, . . . , n}, pj does not move in the second round either.

Proof. If i = n, then the observation trivially follows. We assume i < n.
According to the first round algorithm, it holds that |C(x′

k−1, x′
k)| ≥ δ for any k ∈

{2, . . . , n}. Since pi does not move in the second round, x′′
i = x′

i holds. Due to |C(x′
i, x′

i+1)| ≥
δ, according to our second round algorithm (e.g., Equation (3)), x′′

i+1 = x′
i+1. By the same

reasoning, x′′
j = x′

j for any j ∈ {i + 1, . . . , n}, which leads to the observation. ◀

With Observations 8 and 9, we can prove the following lemma.

▶ Lemma 10. Suppose k is the largest index such that pk does not move in the first round
of the algorithm; then pk does not move in the second round of the algorithm either, i.e.,
xk = x′

k = x′′
k.

Proof. According to the first round algorithm, it holds that |C(x′
i−1, x′

i)| ≥ δ for any
i ∈ {2, . . . , n}.

By Observation 8, k ∈ {2, . . . , n}. We first discuss the case where k ∈ {3, . . . , n − 1}.
Indeed, this is the most general case. As shown later, the case where k = 2 or k = n can by
proved by similar but simpler techniques.

By the definition of k, the points pk+1, pk+2, . . . , pn are moved in the first round. Hence,
for each i ∈ {k + 1, . . . , n}, according to our first round algorithm (i.e., Equation (1)),
|C(x′

i−1, x′
i)| = δ. Thus,

|C(x′
k, x′

n)| =
n∑

i=k+1
|C(x′

i−1, x′
i)| = (n − k) · δ. (4)

Recall that p1 is moved in the second round, and according to Equation (2),

|C(x′
n, x′′

1)| = δ. (5)

If there is any i ∈ {2, . . . , k − 1} such that pi does not move in the second round, then by
Observation 9, pk does not move in the second round either, which leads to the lemma.

Otherwise, since every point pi with i ∈ {2, . . . , k − 1} is moved in the second round,
according to our second round algorithm (i.e., Equation (3)), |C(x′′

i−1, x′′
i )| = δ holds. Hence,

we obtain

|C(x′′
1 , x′′

k−1)| =
k−1∑
i=2

|C(x′′
i−1, x′′

i )| = (k − 2) · δ. (6)

CGT
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Based on Equations (4), (5), and (6), we obtain |C(x′
k, x′

n)|+|C(x′
n, x′′

1)|+|C(x′′
1 , x′′

k−1)| =
(n − 1) · δ. This implies that in the second round the counterclockwise movement of pk−1
from x′

k−1 to x′′
k−1 does not cross xk = x′

k, due to |C| ≥ n · δ. Further, |C(x′′
k−1, x′

k)| =
|C| − |C(x′

k, x′′
k−1)| = |C| − (|C(x′

k, x′
n)| + |C(x′

n, x′′
1)| + |C(x′′

1 , x′′
k−1)|) = |C| − (n − 1) · δ ≥ δ.

According to our second round algorithm (i.e., Equation (3)), x′′
k = x′

k, i.e., pk does not move
in the second round.

The above proves the lemma for the case where k ∈ {3, . . . , n − 1}.
If k = 2 or k = n, the proof is very similar.
If k = 2, then we still have Equations (4) and (5). Thus, |C(x′

2, x′
n)| + |C(x′

n, x′′
1)| =

(n − 1) · δ. This implies that in the second round the counterclockwise movement of p1 from
x′

1 to x′′
1 does not cross x2 = x′

2, due to |C| ≥ n ·δ. Further, |C(x′′
1 , x′

2)| = |C|− |C(x′
2, x′′

1)| =
|C| − (|C(x′

2, x′
n)| + |C(x′

n, x′′
1)|) = |C| − (n − 1) · δ ≥ δ. According to our second round

algorithm (i.e., Equation (3)), x′′
2 = x′

2, i.e., p2 does not move in the second round. Hence,
the lemma is proved.

If k = n, then we still have Equations (5) and (6). Thus, |C(x′
n, x′′

1)| + |C(x′′
1 , x′′

n−1)| =
(n − 1) · δ. This implies that in the second round when pn−1 moved from x′

n−1 to x′′
n−1, pn−1

does not cross xn = x′
n, due to |C| ≥ n · δ. Further, |C(x′′

n−1, x′
n)| = |C| − |C(x′

n, x′′
n−1)| =

|C| − (|C(x′
n, x′′

1)| + |C(x′′
1 , x′′

n−1)|) = |C| − (n − 1) · δ ≥ δ. According to our second round
algorithm (i.e., Equation (3)), x′

n = x′′
n, i.e., pn does not move in the second round. Hence,

the lemma follows.
In summary, pk does not move in the second round of the algorithm. ◀

Recall that F2 is the configuration after the second round of the algorithm. Our goal is
to prove that F2 is a canonical configuration. Based on the proof of Lemma 10, we have the
following two corollaries.

▶ Corollary 11. The configuration F2 is feasible.

Proof. Suppose pk is the point specified in Lemma 10. Hence, k ∈ {2, . . . , n} and pk does not
move in the two rounds of our algorithm. We only prove the case where k ∈ {2, . . . , n − 1},
and the case k = n can be proved by similar (but simpler) techniques.

After the first round, it holds that |C(x′
i−1, x′

i)| ≥ δ for each i ∈ {k + 1, . . . , n}. Since xk

does not move in the second round, by Observation 9, x′′
i = x′

i for any i ∈ {k, . . . , n}. Hence,
for each i ∈ {k + 1, . . . , n}, it holds that |C(x′′

i−1, x′′
i )| ≥ δ.

On the other hand, according to our second round algorithm, |C(x′
n, x′′

1)| ≥ δ and
|C(x′′

i−1, x′′
i )| ≥ δ for each i ∈ {2, . . . , k}. Since x′

n = x′′
n, it holds that |C(x′′

n, x′′
1)| =

|C(x′
n, x′′

1)| ≥ δ.
The above discussion leads to the following observation: x′′

1 , x′′
2 , . . . , x′′

n are ordered coun-
terclockwise on C, and further, for each i ∈ {2, . . . , n}, |C(x′′

i−1, x′′
i )| ≥ δ, and |C(x′′

n, x′′
1)| ≥ δ.

To show that F2 is feasible, our goal is to prove that |x′′
i x′′

j | ≥ δ for any i ̸= j ∈ {1, . . . , n}.
Consider any i ̸= j ∈ {1, . . . , n}. Without loss of generality, we assume i < j. To prove
|x′′

i x′′
j | ≥ δ, it is sufficient to show that |C(x′′

i , x′′
j )| ≥ δ and |C(x′′

j , x′′
i )| ≥ δ.

Based on the above observation, we can obtain C(x′′
i , x′′

i+1) ⊆ C(x′′
i , x′′

j ) and |C(x′′
i , x′′

j )| ≥
|C(x′′

i , x′′
i+1)| ≥ δ. On the other hand, C(x′′

n, x′′
1) ⊆ C(x′′

j , x′′
i ). Since |C(x′′

n, x′′
1)| ≥ δ, we

have |C(x′′
j , x′′

i )| ≥ |C(x′′
n, x′′

1)| ≥ δ.
Therefore, |x′′

i x′′
j | ≥ δ holds. The corollary thus follows. ◀

▶ Corollary 12. The total counterclockwise moving distance of each point of P in the two
rounds of the algorithm is at most |C| − δ, which implies that |C(xi, x′′

i )| ≤ |C| − δ for each
1 ≤ i ≤ n.
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Proof. By Lemma 10, suppose pk does not move in the two rounds of our algorithm. For
each other point pi with i ̸= k, since pk does not move in the algorithm, the counterclockwise
movement of pi in the two rounds of the algorithm does not cross xk. Further, as shown
in the proof of Corollary 11, both |C(xk, x′′

i )| ≥ δ and |C(x′′
i , xk)| ≥ δ hold. Hence, the

maximum counterclockwise movement of pi in the two rounds is no more than |C| − δ. The
corollary follows. ◀

Finally, the next lemma shows that F2 is a canonical configuration.

▶ Lemma 13. The configuration F2 is a canonical configuration.

Proof. Corollary 11 has already shown that F2 is a feasible configuration. To prove the
lemma, it is sufficient to prove that there exist i and j in {1, . . . , n} such that dmax = w(i, j),
where dmax = max1≤k≤n |C(xk, x′′

k)|.
Let j be the index such that dmax = |C(xj , x′′

j )|. We define another index i as follows. If
j = 1, or j > 1 but all points of p1, p2, . . . , pj−1 are moved in the two rounds of the algorithm,
let i be the largest index in {j + 1, . . . , n} such that pi does not move in the two rounds of
the algorithm; otherwise (i.e., j > 1 and at least one point of p1, p2, . . . , pj−1 does not move
in the two rounds of the algorithm), let i be the largest index in {1, . . . , j − 1} such that pi

does not move in the two rounds of the algorithm. By Lemma 10, such an index i must exist.
In the following, we prove that dmax = w(i, j).

Depending on whether i ∈ {1, . . . , j − 1} or i ∈ {j + 1, . . . , n}, there are two cases.

1. If i ∈ {1, . . . , j − 1}, then by the definition of i, all points pi+1, pi+2, . . . , pj are moved
in the algorithm. Since pi does not move in the second round, by Observation 9, for
each k ∈ {i + 1, . . . , n}, pk does not move in the second round. This implies that
every point of pi+1, pi+2, . . . , pj is moved in the first round of the algorithm. According
to our first round algorithm, |C(x′

k−1, x′
k)| = δ for each k ∈ {i + 1, . . . , j}. Hence,

|C(xi, x′′
j )| = |C(x′′

i , x′′
j )| =

∑j
k=i+1 |C(x′′

k−1, x′′
k)| = (j − i) · δ (because x′′

k = x′
k for each

k ∈ {i, . . . , n}).
Since i < j and xi = x′

i = x′′
i , C(xi, x′′

j ) = C(xi, xj) ∪ C(xj , x′′
j ). Thus, dmax =

|C(xj , x′′
j )| = |C(xi, x′′

j )| − |C(xi, xj)| = (j − i) · δ − |C(xi, xj)|, which is equal to w(i, j)
since i < j.
Hence, the lemma is proved for this case.

2. If i ∈ {j + 1, . . . , n}, we only discuss the general case where i < n. The special case where
i = n can be proved by similar (but simpler) techniques.
Consider any point pk with k ∈ {i + 1, . . . , n}. Since pi does not move in the two rounds
of the algorithm, by Observation 9, pk does not move in the second round. According to
the definition of i, pk is moved in the algorithm. Hence, pk is moved in the first round.
According to our first round algorithm (i.e., Equation (1)), |C(x′

k−1, x′
k)| = δ. Further,

since x′′
k = x′

k, |C(x′′
k−1, x′′

k)| = δ holds. Therefore, |C(x′′
i , x′′

n)| =
∑n

k=i+1 |C(x′′
k−1, x′′

k)| =
(n − i) · δ.
Since p1 is moved in the second round, by Equation (2), |C(x′

n, x′′
1)| = δ. We have shown

above that pk does not move in the second round for any k ∈ {i + 1, . . . , n}. Hence,
x′′

n = x′
n and |C(x′′

n, x′′
1)| = δ.

If j = 1, then |C(x′′
i , x′′

1)| = |C(x′′
i , x′′

n)| + |C(x′′
n, x′′

1)| = (n + 1 − i) · δ. Further, since pi

does not move in the algorithm (i.e., x′′
i = x′

i = xi), dmax = |C(x1, x′′
1)| = |C(xi, x′′

1)| −
|C(xi, x1)| = (n + 1 − i) · δ −|C(xi, x1)|, which is equal to w(i, 1). The lemma thus follows.
In the following, we discuss the case j > 1.
Consider any point pk with k ∈ {2, . . . , j}.

CGT
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We claim that pk is moved in the second round (i.e., x′
k ̸= x′′

k). We prove the claim by
induction. Indeed, by the definition of i, pk is moved in the two rounds of the algorithm.
Recall that p1 is moved in the second round. For any k ∈ {2, . . . , j}, suppose pk−1 is
moved in the second round. Assume to the contrary that pk does not move in the second
round. Then, pk must be moved in the first round. According to our first round algorithm
(i.e., Equation (1)), |C(x′

k−1, x′
k)| = δ. Since pk−1 is moved in the second round, pk must

be moved as well.
In light of the above claim and according to our second round algorithm, |C(x′′

k−1, x′′
k)| = δ

for each k ∈ {2, . . . , j}. Therefore, we derive |C(x′′
1 , x′′

j )| =
∑j

k=2 |C(x′′
k−1, x′′

k)| = (j−1)·δ.
Based on the above discussions, |C(x′′

i , x′′
j )| = |C(x′′

i , x′′
n)| + |C(x′′

n, x′′
1)| + |C(x′′

1 , x′′
j )| =

(n + j − i) · δ. Since xi = x′′
i , dmax = |C(xj , x′′

j )| = |C(xi, x′′
j )| − |C(xi, xj)| = (n + j − i) ·

δ − |C(xi, xj)|, which is equal to w(i, j).

As a summary, F2 is a canonical configuration. ◀

Clearly, both rounds of our algorithm run in O(n) time. Combining Lemmas 6, 7, and
13, we have the following result.

▶ Theorem 14. The cycle version of the points-spreading problem is solvable in O(n) time.

Remark: One may verify that our algorithm for computing the canonical configuration F2
essentially solves the following one-directional case of the cycle version problem: Move the
points of P counterclockwise such that any pair of points of P are at least δ away from each
other and the maximum counterclockwise moving distance over all points of P is minimized.

4 The facility-location movement problem

In this section, we present our linear-time algorithm for the facility-location movement
problem. In this problem, we are given a set S of k “server” points and a set Q of n “client”
points sorted on a line L, and the goal is to move all servers and clients on L such that each
client co-locates with a server and the maximum moving distance of all servers and clients is
minimized.

As shown by Dumitrescu and Jiang [4], the problem is equivalent to finding k intervals
(i.e., line segments) on L such that each interval contains at least one server, each client is
covered by at least one interval, and the maximum length of these intervals is minimized. In
the following, we will focus on solving this interval coverage problem (also called constrained
k-center problem in [4]).

Dumitrescu and Jiang [4] presented an O((n+k) log(n+k)) time algorithm using dynamic
programming. We discover a monotonicity property on their dynamic programming scheme,
and consequently improve their algorithm to O(n + k) time. Below, we first review the
algorithm in [4] and then show our improvement.

4.1 Preliminaries
Without loss of generality, we assume L is the x-axis. Let S = {s1, s2, . . . , sk} be the set of
servers sorted on L from left to right. Let Q = {q1, q2, . . . , qn} be the set of clients sorted on
L from left to right. For ease of exposition, we assume no two points in S ∪ Q are at the
same location.

For any two points p and q on L with p to the left of q, we use [p, q] to denote the interval
on L with left endpoint at p and right endpoint at q. An easy observation is that there exists
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an optimal solution consisting of k intervals in {[p, q] | p, q ∈ S ∪ Q}, i.e., every interval in
the optimal solution starts and ends at a point in S ∪ Q. For any two points p and q on L,
let d(p, q) denote the distance between them.

The servers of S partition the clients of Q into k + 1 subsets, defined as follows. For
each i ∈ {1, . . . , k − 1}, let Qi be the subset of the clients of Q between si and si+1 on L.
In addition, we let Q0 be the subset of the clients of Q to the left of s1, and let Qk be the
subset of the clients of Q to the right of sk. Since both S and Q are already given sorted, we
can obtain the subsets Q0, Q1, . . . , Qk in O(n + k) time. In the following, for simplicity of
discussion, we assume Qi is not empty for each i ∈ {0, . . . , k}. This implies that the leftmost
client q1 is to the left of the leftmost server s1 and the rightmost client qn is to the right of
the rightmost server sk. For each i ∈ {1, . . . , k}, let Q′

i = {si} ∪ Qi.

4.2 A dynamic programming algorithm
Consider any Q′

i with 1 ≤ i ≤ k. Let q be any point in Q′
i. Consider the subproblem at q:

Finding i intervals on L such that each interval contains at least one server of {s1, s2, . . . , si},
each client to the left of q (including q if q ̸= si) must be covered by at least one interval,
and the maximum length of these i intervals is minimized. Define α(q) as the maximum
length of the intervals in an optimal solution of the above subproblem at q. Our goal for the
interval coverage problem is to solve the subproblem at qn and compute the value α(qn).

For any point q ∈ S ∪ Q, we use rq to denote the right neighboring point of q on L in
S ∪ Q (i.e., the closest point of S ∪ Q to q strictly to the right of q). Note that after merging
S and Q into one sorted list, we can obtain rq for each q ∈ S ∪ Q in constant time.

Initially, for each q ∈ Q′
1, α(q) = d(q1, q) (recall that q1 is to the left of s1).

In general, consider any q ∈ Q′
i for any 2 ≤ i ≤ k. It holds that

α(q) = min
q′∈Q′

i−1

max{α(q′), d(rq′ , q)}.

In words, in order to solve the subproblem at q, we use the i − 1 intervals for the subproblem
at q′ along with an additional interval [rq′ , q]. To compute α(q), Dumitrescu and Jiang [4]
used the following observation: As we consider the points q′ of Q′

i−1 from left to right, α(q′)
is monotonically increasing and d(rq′ , q) is monotonically decreasing. Hence, if α(q′) is known
for all q′ ∈ Q′

i−1, α(q) can be computed in O(log |Q′
i−1|) time by binary search.

In this way, the value α(qn) can be computed in O((n+k) log(n+k)) time (more precisely,
O((n + k) log n) time) and an optimal solution can be found correspondingly. Note that the
algorithm of Dumitrescu and Jiang [4] does not assume that points of S ∪ Q are sorted. But
even if they are sorted, their dynamic programming algorithm still takes O((n+k) log(n+k))
time.

4.3 An improved implementation
We give an O(n + k) time implementation for the above dynamic programming scheme. To
this end, we find a new monotonicity property in Lemma 15.

Consider any point q ∈ Q′
i such that rq is still in Q′

i. For any point q′ ∈ Q′
i−1, define

f(q′) = max{α(q′), d(rq′ , q)}. Hence, α(q) = minq′∈Q′
i−1

f(q′). Let zq be the point in Q′
i−1

such that α(q) = f(zq) (if there is more than one such point, we let zq refer to the rightmost
one).

▶ Lemma 15. Either zrq
= zq or zrq

is strictly to the right of zq.

CGT
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α(q′)

q′

d(rq′, rq)

d(rq′, q)

zq zrq

Figure 2 Illustrating the three functions α(q′), d(rq′ , q), and d(rq′ , rq) for q′ ∈ Q′
i−1.

Proof. Recall that as we consider the points q′ of Q′
i−1 from left to right, α(q′) is monotoni-

cally increasing and d(rq′ , q) is monotonically decreasing. Intuitively, zq corresponds to the
intersection of the two functions α(q′) and d(rq′ , q) for q′ ∈ Q′

i−1 (e.g., see Fig. 2). Similarly,
for the point rq, which is still in Q′

i, zrq
corresponds to the intersection of the two functions

α(q′) and d(rq′ , rq) for q′ ∈ Q′
i−1. An observation is that we can obtain the function d(rq′ , rq)

by shifting d(rq′ , q) upwards by the value d(q, rq) (e.g., see Fig. 2). This implies that zrq

cannot be strictly to the left of zq.
The above is an “intuitive” proof. We now provide a more rigorous argument. Ac-

cording to the above discussion, if we consider the points q′ of Q′
i−1 from left to right,

max{α(q′), d(rq′ , q)} is first monotonically decreasing and then increasing. By the definition
of zq, max{α(q′′), d(rq′′ , q)} ≥ max{α(zq), d(rzq

, q)} must hold, where q′′ ∈ Q′
i−1 is the

left neighboring point of zq. Notice that d(rq′′ , rq) = d(rq′′ , q) + d(q, rq) and d(rzq , rq) =
d(rzq

, q) + d(q, rq). Therefore, we obtain max{α(q′′), d(rq′′ , rq)} ≥ max{α(zq), d(rzq
, rq)}.

This further implies that zrq is either zq or strictly to the right of zq. The lemma thus
follows. ◀

Lemma 15 essentially says that if we consider all points q ∈ Q′
i from left to right, then

zq in Q′
i−1 are also sorted on L from left to right. Due to this monotonicity property

on zq, we can compute zq and α(q) for all q ∈ Q′
i in a total of O(|Q′

i−1| + |Q′
i|) time by

scanning the points of Q′
i−1 from left to right. More specifically, suppose that we have

computed zq and α(q) for some q ∈ Q′
i. If rq is still in Q′

i, to compute zrq
and α(rq), we

scan the points of Q′
i−1 starting from zq to the right until a point q′ ∈ Q′

i−1 such that
max{α(q′′), d(rq′′ , rq)} ≥ max{α(q′), d(rq′ , rq)} < max{α(rq′), d(rrq′ , rq)}, where q′′ ∈ Q′

i−1
is the left neighboring point of zq. Then, we set zrq

= q′ and α(rq) = max{α(q′), d(rq′ , rq)}.
In this way, the value α(qn) can be computed in O(n + k) time, and an optimal solution

can be found correspondingly. Hence, we have the following theorem.

▶ Theorem 16. If all servers and clients are sorted on the line L, then the facility-location
movement problem can be solved in O(n + k) time.

5 Concluding remarks

In this paper, we studied the points-spreading problem for both a line version and a cycle
version. We also considered a related facility-location movement problem. We presented
linear-time algorithms for all three problems, which are clearly optimal.

As an application, our algorithm for Theorem 16 can be used to solve the cycle version of
the same problem, where all servers and clients are given on a cycle. Dumitrescu and Jiang [4]
showed that the cycle version can be solved by solving at most (n + k)/k instances of the
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above line version of the problem. More specifically, there must be an adjacent pair of servers
such that there are at most n/k clients between them; cutting the cycle between each adjacent
pair of the above clients will result in an instance of the line version, with a total of no more
than (n + k)/k instances. By using their line-version algorithm of O((n + k) log(n + k)) time,
Dumitrescu and Jiang [4] solved the cycle version of the problem in O( 1

k (n + k)2 log(n + k))
time. By applying our improved algorithm for the line version (and assuming that the servers
and clients are all given sorted on the cycle), the cycle version can be solved in O( 1

k (n + k)2)
time. It would be interesting to see whether a better algorithm is possible.

As mentioned in Section 1, the min-sum version of the points-spreading problem for
points on a line can be solved in O(n log n) time [8]. To the best of our knowledge, the cycle
version of the problem has not been studied before. An interesting future work would be to
see whether the techniques in our paper can be somehow adapted to tackle the problem.
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