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Abstract
Casting is a manufacturing process where liquid material is poured into a mold having the shape
of a desired product. After the material solidifies, the product is removed from the mold. We
study the case where the mold is made of a single part and the object to be produced is a three-
dimensional polyhedron. Objects that can be produced this way are called castable with a single-part
mold. A direction in which the object can be removed without breaking the mold is called a valid
removal direction. We give an O(n)-time algorithm that decides whether a given polyhedron with n

facets is castable with a single-part mold. When possible, our algorithm provides an orientation
of the polyhedron in the mold and a direction in which the product can be removed without
breaking the mold. Moreover, we provide an optimal Θ(n log n)-time algorithm to compute all valid
removal directions for polyhedra that are castable with a single-part mold. Both algorithms are an
improvement by a linear factor over the previously best known algorithms for both of these problems.
We also present an exact implementation of our algorithms using the Cgal library and employ our
implementation to demonstrate the castability of a variety of polyhedra.
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1 Introduction

Casting is a widely used manufacturing process, where liquid material is poured into a cavity
inside a mold, which has the shape of a desired product. After the material solidifies, the
product is taken out of the mold. Typically, a mold is used to manufacture numerous copies
of the product; thus to ensure that a mold can be re-used, the solidified product must be
separated from its mold without breaking the object or the mold.

The problems that we study belong to the larger topic termed Movable Separability
of Sets; see [24]. Problems in this area are often challenging from a combinatorial- and
computational-geometry point of view (see, e.g., [22]). At the same time, solutions to
these problems are needed in various application areas such as mold design [2], assembly
planning [15], and 3D printing [4] to mention a few.
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7:2 Optimal Algorithms for Separating a Polyhedron from its Single-Part Mold

In this paper we focus on a basic movable-separability question. We are given a polyhedron
P in R3 with n facets. No assumptions about the polyhedron are made beyond that it is a
closed regular set; namely, it does not have dangling edges or facets. The mold is box-shaped
and the cavity has the shape of P rotated in such a way that one of P ’s facets becomes the
top of the cavity; see Figure 1 for an illustration in 2D. Any facet that becomes the top of the
cavity is referred to as a top facet. For any top facet, we detect whether there is a direction
in which the solidified object can be removed from the mold, such that its interior does not
collide with the mold. Such a direction is a valid removal direction and the corresponding
top facet is a valid top facet. A polyhedron P is castable with a single-part mold if P has at
least one valid top facet.

Figure 1 Polygons (blue) in their molds (pink) and valid removal directions.

We address two problems:

1. All Facets Single Direction (AllFSD):
Determine which facets of P are valid top facets, and for each such facet indicate one
valid removal direction.

2. All Facets All Directions (AllFAD):
Same as above, but for each valid facet indicate all the valid removal directions.

Why would anyone bother to solve AllFAD and not be satisfied with AllFSD? First, a
solution is more stable if there is a continuum of directions rather than a single direction of
separation. Second, we can use the availability of many possible directions to optimize other
criteria, e.g., minimizing the product’s contact with the mold during removal.

1.1 Previous results
The previous best algorithms that we are aware of are based on [2, 4] and solve AllFAD
in O(n2 logn) time and AllFSD in O(n2) time. These algorithms are summarized in [13,
Chapter 4], which we refer to here after. They solve the AllFAD and AllFSD problems by
solving the following two simpler problems n times—handling each facet as a candidate top
facet separately:

1. Single Facet Single Direction (SingleFSD):
Determine whether a given facet Fi of a polyhedron P is a valid top facet and if so,
indicate one direction in which P can be removed from the mold with Fi as its top facet.

2. Single Facet All Directions (SingleFAD):
Same as above except indicate all the directions in which P can be removed from the
mold with Fi as its top facet.

The existing algorithm for SingleFSD takes O(n) time and the existing algorithm for
SingleFAD takes O(n logn) time. A variant of AllFSD in which we restrict the removal
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direction to be the outer normal of the top facet is solvable in O(n) time [4]. For this variant,
the top facet on the left of Figure 1 would be valid but not the one on the right. The
linear running time stems from the existence of a set of six candidate facets that need to be
considered. However, when considering all possible removal directions for a facet, as we do
here, it was not known how to find such a set of constant size. All the algorithms including
the ones that we present use linear storage space. Related work on computational aspects
of manufacturing processes has been done for casting with a two-part mold [2, 8], gravity
casting, and stereolithography [4]; see also the survey [10].

1.2 Contribution
Our contribution is an O(n)-time algorithm for the AllFSD problem and an O(n logn)-time
algorithm for the AllFAD problem. We obtain the improved running time by showing that
it suffices to consider a constant number of candidate top facets. Specifically, we prove that
for any polyhedron there are at most six valid top facets. As a result, we can solve AllFSD
(resp. AllFAD) by solving SingleFSD (resp. SingleFAD) a constant number of times,
rather than n times as in the previous best algorithm. Both our algorithms have an optimal
running time. We also present an O(n)-time algorithm for the AllFAD problem when the
input polyhedron is convex.

The efficiency of our solution makes it a good candidate for implementation, which may
enable product designers and engineers to quickly verify the castability of their design. Indeed,
the algorithms that solve AllFSD, AllFAD, SingleFSD, SingleFAD, in the plane have
been implemented and are available as free functions in the Cgal (Computational Geometry
Algorithms Library) package 2D Movable Separability of Sets [21]. The implementation of
the corresponding algorithms in three-dimensional space is currently private and can be
obtained upon request; see Section 7.

A previous version of this paper [9] was presented at the IEEE 13th International
Conference on Automation Science and Engineering (CASE 2017). In this paper we extend
our previous work by presenting an Ω(n logn) lower bound for the AllFAD (and SingleFAD)
problem, proving that our O(n logn)-time algorithm is optimal. Moreover, we present here our
implementation of the algorithms along with examples and experiments of their application
to various polytopes.

2 Preliminary analysis

Instead of considering all of the facets as candidate top facets and running a separate
algorithm for each of them, as in [13, Chapter 4], we start by finding a small set (whose
size is bounded by a constant) of top facets. Then we solve SingleFSD/SingleFAD [13,
Chapter 4] for each of the candidates.

In order to find the possible top facets we consider an arrangement of great circles on the
unit sphere S2. An arrangement of curves on the sphere is a subdivision of the sphere into
vertices, edges, and faces induced by the given curves: Vertices are the intersection points of
the curves, edges are the maximal portions of a curve not intersected by any other curve,
and faces are the maximal portions of the sphere that are not intersected by any curve; see,
e.g., [6, 7]. Each point p on S2 represents a direction in R3—the direction of the vector from
the center of S2 to p. We use the terms points and directions on S2 interchangeably.

Remark. In the sequel, we illustrate our main concepts in 3D. The reader may also
benefit from an illustration of their analogs in 2D; see "Illustration" in Section 4. We
occasionally refer to the 2D figures.

CGT



7:4 Optimal Algorithms for Separating a Polyhedron from its Single-Part Mold

Let F1, . . . , Fn be the facets of the given polyhedron P . Let ν(Fi) be the normal to the
facet Fi pointing inwards, into the polyhedron. Every facet Fi is associated with a rotation
Ri, such that Fi becomes a top facet when Ri is applied to P . During our analysis, we use
the notation d⃗ to refer to a removal direction. For convenience this direction is relative to
the given original orientation of the polyhedron. Once we determine that (Fi, d⃗) is a pair
of a valid top facet and a corresponding valid removal direction, we still need to apply the
rotation Ri to our polyhedron, so that Fi becomes the top facet, to yield the exact shape of
the cavity. We also need to apply Ri to d to yield a valid removal direction in the coordinate
system of the mold.

▶ Definition 1. A valid pair is a pair (Fi, d⃗) of a valid top facet and a corresponding valid
removal direction.

▶ Observation 2. The pair (Fi, d⃗) is valid if and only if for each point p in the polyhedron,
the ray that emanates from p with direction d⃗

(i) intersects Fi, and
(ii) ∀j ̸= i, the ray does not intersect Fj. (It may partially overlap1 Fj.)

▶ Lemma 3. The pair (Fi, d⃗) is valid if and only if
(i) d⃗ · ν(Fi) < 0, and
(ii) ∀j ̸= i, d⃗ · ν(Fj) ≥ 0

Proof. For the case where Fi is the top facet of P , this fact is proved in Lemma 4.1 in [13].
It remains to notice that conditions (i) and (ii) of Observation 2 are invariant under rotation.
They hold in P ’s given orientation if and only if they hold when P is rotated such that Fi

becomes the top facet. ◀

(a) (b)

(c) (d) (e) (f) (g)

Figure 2 (a) A pyramid with a hemisphere of directions h̄(Fi) on each of its facets. (c,d,e,f,g)
The individual hemispheres. (b) The overlay of these hemispheres on S2.

1This corresponds to allowing P to be moved out while sliding in contact with Fj .
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Denote by hi := h(Fi) the closed hemisphere of directions d⃗ on S2 for which d⃗ · ν(Fi) ≥ 0,
and by h̄i or h̄(Fi) the open complement hemisphere. For a set of facets X we denote by
H̄(X) the set {h̄(Fi) | Fi ∈ X}. Let H̄ = H̄({F1, . . . , Fn}) = {h̄1, . . . , h̄n}. Let ci denote
the boundary great circle of hi, and let C = {c1, c2, . . . , cn}. Consider the arrangement A(C)
on S2, namely, the subdivision of S2 induced by the great circles in C. See Figure 2 for an
illustration.

▶ Definition 4. The depth of a point p on S2 is the number of hemispheres in H̄ containing
p.

▶ Observation 5. All the points in any fixed cell of the arrangement A(C) have the same
depth.

▶ Lemma 6. There cannot be a face of zero depth in A(C).

Proof. Assume, for the sake of contradiction, that there exists a face of zero depth in the
arrangement A(C). Let d⃗ be a direction in this face. If we choose an arbitrary point inside the
polyhedron (not on its boundary) and go from it in the direction d⃗ we will eventually leave
the polyhedron through some facet Fj . That is, d⃗ must be pointing out of the polyhedron
from Fj , an hence d⃗ is in h̄(Fj), in contradiction to d⃗ lying inside a face with zero depth.

Notice that in order to avoid special degenerate cases, like crossing the polyhedron in an
edge, we choose the arbitrary point such that it does not lie on any of the planes spanned by
the direction d⃗ and an edge of the polyhedron. ◀

▶ Lemma 7. The polyhedron P is castable with a single-part mold if and only if the
arrangement A(C) contains a point of depth 1. A cell ξ of depth 1 in A(C), which is covered
by the hemisphere h̄i, represents a mold whose top facet is Fi and each point d⃗ in ξ represents
a valid removal direction Rid⃗, where Ri is the orthonormal matrix that rotates ν(Fi) to point
vertically down (in the negative z direction).

Proof. Let ξ be a cell of depth 1 in A(C) covered by h̄i, and let d⃗ be a point in ξ. We
establish that (Fi, d⃗) is a valid pair by verifying that the conditions of Lemma 3 above hold
for it.

It remains to show that no point in any cell of different depth can represent a valid
removal direction for any top facet. Consider a cell ψ of depth greater than 1 and a point d⃗
in it. Let J be the index set of the hemispheres h̄i that cover ψ: J = {i | d⃗ ∈ h̄i}. One of
the facets Fj , for j ∈ J , must serve as the top facet for Condition (i) of Lemma 3 to hold.
But then for each of the remaining facets Fk, for k ∈ J, k ̸= j, Condition (ii) of the lemma is
violated. Finally, as shown in Lemma 6, no cell can have depth zero. ◀

Let T ⊆ {F1, . . . , Fn} be the set of all valid top facets. Our goal is to find T . In Section 3
we show that |T | ≤ 6 and then give an algorithm that finds a set of up to 12 facets that
contains T .

▶ Definition 8. A covering set is a set of open hemispheres S ⊆ H̄ such that the union of
all the hemispheres in S covers the entire unit sphere.

For a two-dimensional example of a covering set, which covers the unit circle, see Figure 4.

▶ Lemma 9. For each covering set S, H̄(T ) ⊆ S.

Proof. Let S ⊆ H̄ be a covering set. Assume, for the sake of contradiction that there exists
some facet Fi ∈ T for which h̄i /∈ S. By Lemma 7, a facet Fi is a valid top facet if and only

CGT



7:6 Optimal Algorithms for Separating a Polyhedron from its Single-Part Mold

if there exists a depth 1 cell ξ in A(C) which is covered by h̄i (and only by h̄i). We know
that each point in the unit sphere is covered by some hemisphere h ∈ S, therefore some
hemisphere h̄j ∈ S covers a point in ξ. By the definition of a cell, if some point in the cell is
contained in h̄j then the entire cell is contained in h̄j . We also assumed that h̄i covers ξ,
which means that ξ is of depth at least two, in contradiction to Fi being a valid top facet. ◀

Our next step is to give an algorithm that finds, in linear time, a set of 12 open hemispheres
in H̄ whose union covers the entire unit sphere.

3 Finding a covering set

We begin by showing that a covering set of size 6 exists, which also implies that every
polyhedron has at most 6 valid top facets. As we do so using a proof that does not directly
imply an algorithm, we continue by showing how our observations lead to an algorithm for
finding a slightly larger covering set of size 12. In order to do so, we introduce a definition
and prove the following claims.

▶ Definition 10. The half-plane of a hemisphere h with respect to the upper hemisphere
is the central projection of the intersection of h and the upper hemisphere onto the plane
z = 1 [13, Chapter 4]. See Figure 3 (and also Figure 5b for the analogous central projection
of a semicircle on y = 1).

Remark. The “half-plane” of the lower hemisphere with respect to the upper hemisphere is
empty and the “half-plane” of the upper hemisphere with respect to the upper hemisphere is
the entire plane z = 1.

▶ Lemma 11. If the union of a set of half-planes, B, is the entire plane then there exists a
set S ⊆ B such that the union of the half-planes in S is the entire plane and |S| = 3. The
set S can be computed in linear time in the size of B.

Proof. For a given collection X1, X2, . . . , Xn of convex subsets of Rd, where n > d, Helly’s
theorem [12] states that if the intersection of any d+ 1 objects in this collection is nonempty,
then the entire collection has a nonempty intersection. The contrapositive of this theorem
is that if the intersection of the entire collection is empty then there exists a subset of size
d+ 1 such that its intersection is empty.
In our case d = 2, so we have

⋃
b∈B

b = R2 ⇒
⋃

b∈B

b = ∅ ⇒
⋂

b∈B

b = ∅. By Helly’s theorem,

there exist three half-planes b1, b2, b3 ∈ B such that b1 ∩ b2 ∩ b3 = ∅. By that we learn that
b1 ∪ b2 ∪ b3 = R2. This subset can be computed in linear time in the size of B with linear
space using a version [19] of Megiddo’s LP algorithm [18], or in linear expected time and
constant space using Seidel’s randomized incremental algorithm [20]. ◀

As an intermediate step, we describe how to find a covering set S ⊆ H̄ of size three
for the upper open hemisphere in linear time. If some hemisphere in H̄ is the upper open
hemisphere, return it and stop; we are done. Otherwise, transform each hemisphere in H̄ into
a half-plane on z = 1, as described earlier. Then, use the procedure we have just described
to find three half-planes that cover the entire plane z = 1 in linear time. A covering set for
any open hemisphere in S2 can be found similarly. In summary,

▶ Observation 12. Any open hemisphere in S2 is covered by up to three hemispheres in H̄.
The covering hemispheres can be found in O(|H̄|).

The observation leads to the following.
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(a) (b)

(c) (d)

Figure 3 (a) Top view of the square pyramid depicted in Figure 2a, oriented upside down. Here
the visible facet serves as the top facet. A hemisphere of potential removal (inwards) directions lies
on each of the other four facets. (b) Top view of the central projection of the hemispheres onto the
plane z = 1. The middle rectangle is the intersection of the projected half-planes. (c), (d) Bottom
view of the scene.

▶ Lemma 13. There exists a covering set of size six for S2.

Proof. Let G be some great circle on S2 that does not contain a vertex of A(C) and is not
contained in C. The circle G intersects with various cells from A(C). Each such intersected
cell is partially contained in the two open hemispheres defined by G. This means that any
covering set of an open hemisphere defined by G, covers G as well (i.e., a cell of A(C) cannot
be partially covered). By that and by Observation 12, the covering set of S2 is of size six at
most. ◀

▶ Theorem 14. The number of valid top facets for any polyhedron is at most six and this
bound is tight.

Proof. As we showed in Lemma 13, there exists a covering set of size six, and by Lemma 9,
we know that the number of valid top facets in a polyhedron is bounded by the size of any
covering set. Thus, the number of valid top facets is bounded by six. Notice that this is
tight—all the six facets of a parallelepiped are valid top facets. ◀

We note that Lemma 13 uses a proof of existence that does not provide an algorithm to
compute a covering set of size six. The problem with turning the proof into a linear-time
algorithm is that we do not know how to find deterministically in linear time a great circle

CGT



7:8 Optimal Algorithms for Separating a Polyhedron from its Single-Part Mold

on S2 that avoids all the vertices of the arrangement. We therefore use a different strategy
to find a covering set.

In order to find a covering set S ⊆ H̄ for S2, we first choose four arbitrary open
hemispheres (not from H̄) that cover S2. This can be done by taking the set H̄(X), where
X is the set of facets of some fixed tetrahedron, which covers S2 by Lemma 6. We then find
a covering set of size three for each of the four hemispheres, as described above. Finally, by
combining the resulting covering sets, we obtain a covering set for S2 of total size at most 12.

4 Algorithms

The algorithms for both the AllFAD and AllFSD problems are similar. We first find a
covering set of constant size, as previously discussed. Then, for each facet in the covering
set we solve SingleFAD or SingleFSD [13, Chapter 4], depending on whether we are
solving AllFAD or AllFSD. Finally, for each valid top facet in the covering set we return
either all the removal directions (if solving AllFAD) or a single removal direction (if solving
AllFSD).

Algorithm 1 sketches both solutions. The difference between the AllFSD and AllFAD
variants is in the function handleSingleFacet(P , F ), which for a given polyhedron and
a given facet, solves SingleFAD in O(n logn) time or SingleFSD in linear time [13,
Chapter 4].

Algorithm 1 3D AllFAD/AllFSD

Input: P a polyhedron
Output: A list of all the top facets and their removal direction(s)

1 T ← ∅
2 S ← coveringSet(P )
3 for h̄i ∈ S do
4 directions ← handleSingleFacet(P ,Fi)
5 if directions.notEmpty then
6 T .add(Fi, directions)
7 return T

We obtain the following:

▶ Theorem 15. Given a polyhedron P with n facets as input, our algorithm for AllFSD
outputs a list of all valid top facets and a single removal direction for each such facet in total
O(n) time.

▶ Theorem 16. Given a polyhedron P with n facets as input, our algorithm for AllFAD
outputs a list of all valid top facets and all valid removal directions for each such facet in
total O(n logn) time.

When solving the AllFAD variant, one may wish to run the AllFSD algorithm first to
determine in linear-time whether the polyhedron is castable with a single-part mold.

Illustration
We now illustrate the algorithm for the 2D analog of the problem, where the object to be
cast is a polygon R. Each possible removal direction is now represented by a point on the
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unit circle, rather than a point on the unit sphere S2. That is, instead of considering the
arrangement of great circles on S2 (A(C) above) we now have an arrangement on the unit
circle that is induced by a set of semicircles. Each semicircle is defined by an edge of R.

Figure 4a shows an input polygon R, along with the outer semicircles of its edges, which
correspond to the set H̄. Figure 4b shows the overlay of the outer semicircles on the unit
circle, which results in an arrangement. The first stage of the algorithm consists of finding a
covering set for the unit circle (line 2), which is done using linear programming techniques as
described earlier. Figure 4c shows a covering set that is obtained from the outer semicircles.
Observe that the cell with a depth of 1 in the arrangement is covered by the semicircle of
edge Fi, which is in the covering set.

(a) (b) (c)

Figure 4 Finding a covering set. (a) The outer semicircle for each edge of R. (b) The arrangement
of semicircles for R (innermost circle with breakpoints). There is one cell with a depth of 1, which
is shown using a colored striped arc. The outer semicircles are shown around the arrangement for
clarity. (c) A covering set consisting of three semicircles.

In the next stage of the algorithm, we apply the function handleSingleEdge(R, F )
(which is the 2D analog of handleSingleFacet(P , F ) in 3D) on each edge that corresponds
to a semicircle in the covering set. Here we illustrate the procedure for Fi; for full details,
see [13, Chapter 4]. Given a fixed candidate top edge Fi, the goal is to find the set of valid
removal directions for it. As per Lemma 3, a valid removal direction must lie in the outer
semicircle of Fi and the inner semicircles of all others edges, which are shown in Figure 5a.
That is, for each inner semicircle of a non-candidate edge, we are interested only in the
directions with a positive y component, i.e., the upward directions. (Note that Fi is already
oriented as the top edge. If that is not the case, we rotate the input polygon accordingly.)
Each such direction may be projected onto the line y = 1. For example, Figure 5b shows this
projection for all the upward directions in the inner semicircle of edge Fj , resulting in a ray.
The range of valid directions, as constrained by edge Fj , now corresponds to the resulting
ray. We therefore perform the projection for all non-candidate edges, obtaining a set of rays,
as shown in Figure 5c. By finding the intersection of all the rays, we find the range of valid
removal directions for the candidate top edge Fi, and we are done. If we are interested in a
single removal direction, i.e., when solving AllFSD, then it suffices to find a point contained
in the intersection.

We remark that for 2D the algorithm can be simpler than illustrated. For example,
Asberg et al. [4] solve the 2D analog of AllFAD in linear time and constant space (in

CGT
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(a) (b) (c)

Figure 5 Running handleSingleEdge(R, Fi). (a) The inner semicircle for each edge of R that
is not the candidate top edge Fi. (b) For each edge other than Fi, we project its inner semicircle
onto the line y = 1. The result of the projection is a ray representing the valid removal directions
for the edge. (c) We find the common intersection of the projected rays. The intersection (green)
represents the range of valid directions for the candidate top edge Fi.

addition to the input) using similar techniques. We stick to the steps analogous to those
performed by the 3D algorithm only for explanatory purposes.

5 Lower bound

In this section we show an Ω(n logn) lower bound for SingleFAD. We establish the lower
bound in the algebraic computation tree model [5] using a reduction from sorting. The lower
bound proves the optimality of both the existing SingleFAD algorithm [13, Chapter 4] and
our new algorithm for AllFAD in this model.

Let X = {x1, . . . , xn} be n positive real numbers, which we wish to sort. We describe
a polyhedron P such that the convex polygon Q representing all the removal directions of

Figure 6 Left and middle: A construction of P for X = {3, 2, 4, 1} viewed from the side (left) and
from below (middle). The tetrahedra T1, . . . , T4 appear from left to right and their darkest facets
are the Fi’s (the facet marked by a star is F1). Right: The polygon Q representing the removal
directions for P , which is obtained after running SingleFAD on P and its top facet. The numbers
in X are represented in Q in a sorted manner as the slopes of the four colored edges, which appear
in ascending order from the bottom up.
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its top facet will contain the numbers of X as the slopes of its edges. We can then read off
X in sorted order from the edges of Q. We begin with P as a rectangular frustum whose
two bases, which are rectangular facets, are parallel to the plane z = 0; see Figure 6. Let B
denote the bottom base of P , which is smaller than the top base. For a facet F of P , let
g(F ) denote the half-plane obtained by the central projection of F ’s inner closed hemisphere,
h(F ), onto the plane z = 1 (as in Definition 10)2 and let ℓ(F ) denote the line that defines
g(F ). We call g(F ) the corresponding half-plane of F and ℓ(F ) the corresponding line of F .
Other than the two bases of P , each facet F in P will have the property that g(F ) contains
the origin and ℓ(F ) is tangent to the unit circle. For such a facet F , we can find its inner
normal ν(F ) such that we attain a desired line ℓ(F ) that is tangent to the unit circle as
follows: Take the normal vector v of ℓ(F ) that points to the origin and tilt it upwards about
ℓ(F ) by π/4 radians, which results in ν(F ).

We now describe the remaining facets of P . The corresponding lines of the four non-
base facets of P are x = −1, x = 1, y = −1, y = 1, respectively. For each xi ∈ X, P has
a corresponding facet Fi such that ℓ(Fi) has the slope xi. To add Fi to P , we define a
tetrahedron Ti whose top facet fully overlaps with B, i.e., Ti is attached to B from below.
The remaining three facets of Ti are Fi and two facets whose corresponding lines are x = −1
and y = 1, respectively. The Ti’s are arranged in a row along B.

After applying a SingleFAD algorithm on the top base of P , the output convex polygon
Q is the common intersection of the corresponding half-planes of all of P ’s facets except the
top base (where each point in the common intersection corresponds to a removal direction).
The corresponding half-planes of the facets F1, . . . , Fn contribute to a contiguous set of edges
along Q that are ordered by their slopes, which are x1, . . . , xn. Finally, P has 3n+ 6 facets
and can be constructed in linear time. Therefore, we obtain the following:

▶ Theorem 17. There is an Ω(n logn) lower bound for SingleFAD and AllFAD in the
algebraic computation tree model [5].3

▶ Corollary 18. Our algorithms for AllFSD and AllFAD are optimal.

A natural question is whether we can obtain even more efficient algorithms for special
classes of polyhdera. In the next section we show that this is indeed possible for convex
polyhedra. We now consider another restricted class of polyhedra and show that the lower
bound still holds for it.

A polyhedron P is called star-shaped if it contains a point p such that, for any other
point q in P, the line segment pq lies in P, i.e., p can see all of P’s interior. Such a point p
exists if the intersection of the half-spaces defined by the facets of P (facing into P) is not
empty. We may modify the construction of P above so that P is star-shaped. For the point
p that can see of all P , we take the top left vertex (in the xy-plane) of the top facet, which is
parallel to B; see Figure 6. The point p is contained in the half-spaces corresponding to all
facets of P except for facets of the tetrahedra T1, . . . , Tn that have the corresponding lines
x = −1 and y = 1. We may tilt such facets so that their corresponding lines become x = −c
and y = c respectively, where c is sufficiently large so that p can fully see the tilted facets.
This change has no effect on the possible removal directions, since the frustum part of P

2g(F ) is a half-plane on z = 1 containing all the directions d⃗ with a positive z component such that
d⃗ · ν(F ) ≥ 0

3The theorem holds if the valid removal directions for a facet are to be returned as an explicit polygon,
as is done by our algorithm. One may also elect to return the set of removal directions as the intersection
of (non-sorted) half-planes, in which case the Ω(n log n) lower bound does not hold.
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remains the same, and so it still contains the two facets with the corresponding lines x = −1
and y = 1. Therefore, Q remains the same and we may read off X in sorted order from its
edges as before.

6 Casting convex polyhedra

In this section we show how to solve the AllFAD problem for a convex polyhedron more
efficiently than for an arbitrary polyhedron, namely, in O(n) time. We start with some
simple observations.

▶ Observation 19. Let Q be a convex polygon in the plane whose edges are given in cyclic
order E, say clockwise. Given a direction d⃗ in the plane, all the edges of Q whose inner-facing
normals have a non-negative scalar product with d⃗ form a consecutive subchain of E.

Let π be a plane in R3 that is parallel to a direction d⃗, intersects some convex polyhedron,
P , but does not intersect any of its vertices. Let Q be the convex polygon, which is the
non-empty intersection of the convex polyhedron P with π. For each Fi that intersects with
π we denote by ei the edge Fi ∩ π of Q. Let ν(ei) denote the inner facing normal of ei in Q.

▶ Lemma 20. If sign(ν(Fi) · d⃗) ̸= 0, then sign(ν(ei) · d⃗) = sign(ν(Fi) · d⃗).

Proof. Let D be a vector in direction d⃗ and length ε for some small ε. Then sign(ν(Fi) · d⃗)
indicates whether the direction d⃗ points into or out of P when it starts from a point on
Fi [13, Chapter 4], i.e., if sign(ν(Fi) · d⃗) > 0 (sign(ν(Fi) · d⃗) < 0) for each point p ∈ Fi, then
p+D is in (outside) the polyhedron.

After the intersection with π, each point on ei must still fulfill these conditions, since for
each point p ∈ ei, p+D is in π and therefore it is in the polygon Q if and only if it is in the
original polyhedron. ◀

We say that two facets of the input polyhedron P are neighbors if their closures intersect
at an edge of the polyhedron. Denote by Mi the set of neighbors of the facet Fi, by mi the
cardinality of this set, and by Ji the index set of the facets in Mi. The efficient AllFAD
algorithm for convex polyhedra stems from the observation that it suffices to consider only
the neighbors of Fi in order to determine if Fi is a valid top facet, which we formalize next.

▶ Lemma 21. For a convex polyhedron, the pair (Fi, d⃗) is a valid top facet and a corresponding
valid removal direction if and only if (i) d⃗ · ν(Fi) < 0, and (ii) ∀j ∈ Ji, d⃗ · ν(Fj) ≥ 0.

Proof. The only difference between Lemma 3 and the current lemma is the set of facets on
which Condition (ii) is tested: here it is only on the neighboring facets of Fi. We argue that
if the condition holds for the neighboring facets it holds for all facets other than Fi. Assume,
for a contradiction that it holds for all neighboring facets, and there is a non-neighboring
facet Fk, k ̸= i for which it does not hold. Let s be a segment connecting a point inside
Fi and a point inside Fk. Let π be a plane containing s and parallel to d⃗. If π intersects
a vertex of Fi then we move s (and π) slightly parallel to itself such that it does not cross
any vertex of Fi. Let Q := P ∩ π, and as above let et := Ft ∩ π for every facet Ft of P
that intersects π. Let e′ and e′′ be the two neighboring edges to ei in Q — notice that e′

and e′′ are the intersection of π with two neighboring facets of Fi. By Lemma 20 the scalar
product of d⃗ with both ν(e′) and ν(e′′) is non-negative and with both ν(ei) and ν(ek) is
negative. However, these form an intertwining cyclic subsequence of edges of Q: e′, ei, e

′′, ek,
in contradiction with Observation 19. This means that the inner-facing normal of ek has
non-negative scalar product with d⃗ and the same holds for the inner-facing normal of Fk. ◀
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▶ Lemma 22. Given a convex polyhedron P and a specific top facet Fi of P , it is possible to
find all the removal directions in O(mi) time.

Proof. Without loss of generality let’s assume that Fi is horizontal (parallel to the xy-plane)
and ν(Fi) points vertically downwards. We wish to find all the removal directions for which
the conditions of Lemma 21 hold. This can be done in O(mi logmi) time by finding the
half-plane g(Fj) for each facet Fj in Mi and intersecting all of the resulting half-planes
(see [13, Chapter 4]). We wish to reduce the running time of this procedure to O(mi) time.
Luckily, these half-planes are sorted by their slope since the slope of the half-plane created
by Fj on z = 1 is equal to the slope of the edge on Fi created by Fj (again, z = 1 and Fi are
parallel). The edges of a convex polygon are ordered by their slope. The intersection of a
given set of half-planes which are sorted according to the slope of their bounding lines, can
be computed in O(mi) time [17]. ◀

The algorithm proceeds by fixing a facet Fi, computing its edge-neighboring facets and
computing the set of allowable directions using Lemma 22. We repeat the procedure for
each facet of P . Notice that mi is in fact the number of edges on the boundary of Fi. The
overall cost of O(mi) time over all candidate top facets Fi is O(n) time by Euler’s formula
[3, Chapter 13]. In summary,

▶ Theorem 23. Given a convex polyhedron P with n facets, we can solve the AllFAD
problem for P in time O(n).

We present one more result concerning the relation between the castability of a polyhedron
P and the castability of its convex hull CH(P ). We show that every valid pair (see Definition 1)
of P , induces a corresponding valid pair for CH(P ). This means that the set of valid pairs
of the convex hull of P is a super-set of the valid pairs of P .

▶ Proposition 24. Given a polyhedron P , one of its valid top facets Fi, and a removal
direction d⃗, P ’s convex hull Q, can be removed through CH(Fi) (the convex hull of Fi) with
direction d⃗.

Proof. Assume, for the sake of a contradiction, that Q cannot be removed in direction d⃗

through CH(Fi). This means that for some point q ∈ Q one of the conditions of Observation 2
does not hold. Since Q is convex, the open ray that emanates from q in direction d⃗ cannot
intersect two facets of Q. This means that any point in Q that fulfills the first condition
must fulfill the second condition as well. Thus, the first condition must not hold for q. Let v
be a ray in direction −d⃗, and L be the locus of all the points (not necessarily in Q) for which
the first condition holds. Then L = CH(Fi)⊕ v, where ⊕ is the Minkowski sum operator [1].
Every point in P satisfies the first condition of Observation 2. Therefore P ⊆ L and since L
is convex, Q ⊆ L, which is a contradiction. ◀

A similar relationship between a polyhedron and its convex hull was shown for castability
with a two-part mold [8] and for feasibility of stereolithography [4].

7 Implementation

In this section we provide implementation details and experimental results. As Cgal is our
implementation host, we start with some general details about this open-source library. We
continue with a description of the implementation in the plane and proceed with a detailed
description of the implementation in three-dimensional space. We conclude with experimental
results.
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7.1 Cgal
Cgal (Computational Geometry Algorithms Library) is an open-source software project
that provides easy access to efficient and reliable implementations of geometric algorithms in
the form of a C++ library [23]. Cgal has evolved through the years and now represents the
state of the art in applied computational geometry software. The software modules of Cgal
rigorously adhere to the generic programming paradigm—a discipline that consists of the
gradual lifting of concrete algorithms abstracting over details, while retaining the algorithm
semantics and efficiency. The software modules of Cgal also follow the exact geometric-
computation paradigm, which amounts to ensuring that errors in predicate evaluations do
not occur; it guarantees the robustness of the applied algorithms. As a result, the software
of Cgal is stable despite the use of (inexact) floating point arithmetic, found in standard
hardware, it is complete as it handles all degenerate cases, which typically are in abundance,
and it is efficient—all at the same time.

One salient piece of Cgal consists of the geometric kernels [11]. A geometric kernel
consists of types of constant-size non-modifiable geometric primitive objects, e.g., points, lines,
triangles, and circles and operations on objects of these types. Another distinguishable piece,
referred to as the “Support Library,” consists of non-geometric facilities, such as number-
type support. The rest of the library offers a collection of geometric data structures and
algorithms such as 2D arrangements. These data structures and algorithms are parameterized
by types referred to as traits; traits types define the interface between the data structures
and algorithms and the primitives they use. In many cases (such as ours) a kernel can be
used as a traits class.

7.2 Two-dimensional casting
As part of this work, a new package was added to Cgal called 2D Movable Separability of
Sets [21], which consists of free functions that compute various casting algorithms in the plane.
The package was introduced with the release of version 4.13. The namespace of the functions
in this package, omitted hereafter for clarity, is CGAL :: Set_movable_separability_2
↪→ :: Single_mold_translational_casting . The package provides a function called
top_edges () that accepts a simple closed polygon P and determines whether it is castable
with a single-part mold. This package provides two additional functions, namely,4
pullout_directions () and is_pullout_direction (). The former accepts a simple
closed polygon P and an edge e of the polygon P ; it determines whether e is a valid top
edge of P , and if so, it computes the range of valid removal directions of e. The latter
is overloaded with two versions: The first version accepts a simple closed polygon P and
a direction d; it determines whether d is a valid removal direction of some top edge of P .
The other version accepts, in addition, an edge e of the polygon P ; it determines whether
d is a removal direction of e. Overloads of each of the functions above that accept (i) an
additional argument that indicates the orientation of the input polygon, (ii) an additional
traits argument (see Section 7.1), (iii) both, are also provided by the package.

4Notice that what we refer to as removal direction in the paper is called pullout_direction in
our software packages.



P. Bose, E. Fogel, T. Geft, D. Halperin, and S. Shamai 7:15

7.3 Three-dimensional casting
The implementation of the algorithms in the plane was mainly used as a proof of concept,
and encouraged us to start implementing the algorithms in three-dimensional space. We
have introduced a new package called 3D Movable Separability of Sets, which consists of
free functions that compute various casting algorithms in 3D. This package is available in a
private branch that has not been exposed yet as part of an official release of Cgal. (The
exposition of new features into Cgal requires rigorous testing, documentation, and examples
nowadays, which are still under development.) The 2D Arrangements package of Cgal [25]
can be used to construct, maintain, alter, and display 2D arrangements. This package has
been part of Cgal ever since the first version of Cgal was released over two decades ago [14].
It supports 2D arrangements in the plane. Recently, this package has been extended to
support 2D arrangements embedded in curved surfaces, and especially in the sphere. We
internally use this extension in our implementation.

We have implemented two function templates that accept a simple closed polyhedron P

and determine whether P is castable with a single-part mold; the function templates have
identical signatures and they reside in the following namespace:
CGAL :: Set_movable_separability_3 :: Single_mold_translational_casting .� �

1 template <typename Polyhedron , typename NamedParameters , typename OutputIterator >
2 OutputIterator
3 top_facets ( const Polyhedron & P, const NamedParameters & np , OutputIterator oi);� �

If the polyhedron is castable, the functions compute the set of valid top facets. One
function computes one removal direction in 3D for each valid top facet (solving AllFSD);
the other function computes the closed region of removal directions in 3D for each valid top
facet (solving AllFAD). Recall, that a polyhedron in 3D may have up to six valid top facets.
The input polyhedron must satisfy two conditions as follows. First, it has to be simple.
Essentially, a simple polyhedron is topologically equivalent to a ball the facets of which are
simple polygons. Second, any consecutive three vertices in the counterclockwise sequence
of vertices along the boundaries of every facet cannot be colinear. When the function is
called (and instantiated) the template parameter Polyhedron must be substituted with a
type that represents a polyhedron. Cgal provides two alternatives for such types, namely,
an instance of the CGAL :: Polyhedron_3 <> class template and an instance of the CGAL
↪→ :: Surface_mesh <> class template. The latter is a model of the MutableFaceGraph
and FaceListGraph concepts, which refine corresponding concepts of BGL (Boost Graph
Library).5 Each of these concepts requires, among others, the provision of the nested types
vertex_descriptor , edge_descriptor , and face_descriptor , which are types used
to describe a vertex, a halfedge, and a face, respectively. The parameter np is used to pass
additional parameters to the procedure.6 An example of such a parameter is a flag that
determines whether the input polyhedron is convex. This information can be used to expedite
the computation; see Section 6. The output iterator oi points at a container that holds the
result when the function returns. Dereferencing this iterator yields an object the type of
which is std :: pair.

The first element in the pair identifies a valid top facet. Its exact representation depends
on the representation of the polyhedron. For example, if the polyhedron is represented by

5See https://www.boost.org/libs/graph/doc/IncidenceGraph.html.
6Using named parameters allows users to provide parameters in any order, a technique used, e.g., in

BGL; see https://www.boost.org/doc/libs/1_76_0/libs/graph/doc/bgl_named_params.html.
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an instance of the class template CGAL :: Surface_mesh <>, the top facet is represented
by its index, the type of which is convertible to face_descriptor .
The second element is either one valid removal three-dimensional direction or a closed
spherical patch of valid removal three-dimensional directions bounded by arcs of great
circles. The patch is represented as a sequence of the extreme directions of the patch of
type Kernel :: Direction_3 . It is a face of an arrangement induced by arcs of great
circles embedded on the sphere.

7.4 Experimental results
We ran experiments on an Intel Core i7-4770 CPU clocked at 3.4 GHz with 16 GB of
RAM, a high-class desktop CPU, which would be a good fit for CAD applications. We have
conducted two rounds of experiments. In the first round we examined different polyhedra
of small complexities, but with different numbers of valid top facets. In the second round
we used a procedural method to gradually increase the complexity of a polyhedron with a
certain pattern; we used the resulting polyhedra to measure the performance of our code.

1 2 3 4 5 6 7 8 9

Figure 7 Various polyhedra and some of their valid removal directions.

Table 1 Various polyhedra and the number of valid top faces.

No. Polyhedron # # # removal directions per top facet
facets top facets 1 2 3 4 5 6

1 Octahedron 8 0
2 Pentagonal pyramid 6 1 ∞
3 Pentagonal prism 7 2 1 1
4 Tetrahedron plus 6 3 ∞ ∞ ∞
5 Tetrahedron 4 4 ∞ ∞ ∞ ∞
6 Square pyramid 5 5 ∞ ∞ ∞ ∞ ∞
7 Triangular prism 5 5 1 1 ∞ ∞ ∞
8 Cube 6 6 1 1 1 1 1 1
9 Parallelepiped 6 6 1 1 1 1 1 1

Figure 7 depicts eight polyhedra that we have examined. Polyhedron (4), Tetrahedron
plus, is constructed from a tetrahedron by taking one of its four triangular facets, subdividing
the facet into three triangular facets using a new vertex, and slightly lifting the new vertex
in the direction of the outward normal. Observe that in some cases, a valid top facet has
exactly one valid removal direction. In other words, the removal directions are isolated in
the infinite space of directions. Naturally, finding these particular directions would fail if the
computation is naively carried out without taking special measures to deal with round-off
errors. Our code successfully handled these degenerate cases. Table 1 lists the polyhedra,
their total number of facets, and the number of top facets. The number of each polyhedron
in the table matches the number in the figure.
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Figure 8 (a) Truncated pyramids. The numbers on the left indicate the number of the corre-
sponding non-horizontal facets. (b) A graph of the time it takes to compute one valid removal
direction of truncated pyramids of growing complexities.

We developed a benchmark that finds a valid removal direction for the single valid top facet
of each polyhedron in a sequence of truncated pyramids with gradually growing complexities;
see Figure 8a. In this benchmark we used the overloaded function top_facets () that solves
the AllFSD problem, and we measured its performance. The plot depicted in Figure 8b
shows the graph of the time it takes to compute a (single) valid removal direction as a
function of the complexity of the input polyhedron. As expected the graph is approximately
linear.

8 Conclusion and further work

We have described and implemented efficient solutions to determine the castability of a
polyhedron with a single-part mold. Our algorithms are an order of magnitude faster than
the best previously known algorithms for these problems. We showed that our algorithms
are optimal in the algebraic computation tree model.

We outline several directions for further research:

(I) Our focus here was on separability with a single translation. Can one devise efficient
algorithms in case we are allowed to remove the polyhedron from its cast using arbitrary
motion? This problem is already interesting for separating a planar polygon from its
planar cast. The latter can be resolved by considering the motion planning problem
for a robot (the polygon) among obstacles (the mold). This approach however would
yield a near-quartic time solution [16]. Thus, the goal here is to take advantage of the
special structure of the problem to obtain a more efficient solution.

(II) There are many interesting problems when the mold is made of two or more parts (see,
e.g., [2]), and we hope that our novel observations here may open the door to more
efficient algorithms for these more complicated casting problems. Furthermore, we
believe that our algorithms and their implementation can be used for special types
of two-part molds, where we split the mold into two by a cutting plane. Then, one
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can try many candidate cutting planes and for each one apply the efficient single-part
mold algorithms on each of the two resulting object pieces.
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