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Abstract
We give an overview of the 2023 Computational Geometry Challenge targeting the problem Minimum
Coverage by Convex Polygons, which consists of covering a given polygonal region (possibly
with holes) by a minimum number of convex subsets, a problem with a long-standing tradition in
Computational Geometry.
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1 Introduction

The “CG:SHOP Challenge” (Computational Geometry: Solving Hard Optimization Problems)
originated as a workshop at the 2019 Computational Geometry Week (CG Week) in Portland,
Oregon in June, 2019. The goal was to conduct a computational challenge competition that
focused attention on a specific hard geometric optimization problem, encouraging researchers
to devise and implement solution methods that could be compared scientifically based on how
well they performed on a database of carefully selected and varied instances. While much
of computational geometry research is theoretical, often seeking provable approximation
algorithms for NP-hard optimization problems, the goal of the Challenge was to set the
metric of success based on computational results on a specific set of benchmark geometric
instances. The 2019 Challenge focused on the problem of computing simple polygons of
minimum and maximum area for given sets of vertices in the plane. This Challenge generated
a strong response from many research groups, from both the computational geometry and the
combinatorial optimization communities, and resulted in a lively exchange of solution ideas.

For CG Weeks 2020, 2021, and 2022 the Challenge problems were Minimum Convex
Partition, Coordinated Motion Planning, and Minimum Partition into Plane
Subgraphs, respectively. The CG:SHOP Challenge became an event within the CG Week
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program, with top performing solutions reported in the Symposium on Computational
Geometry (SoCG) proceedings. The schedule for the Challenge was advanced earlier, to give
an opportunity for more participation, particularly among students, e.g., as part of course
projects.

The fifth edition of the Challenge in 2023 continued this format, leading to contributions
in the SoCG proceedings. A total of 22 teams registered, with 18 submitting at least one
valid solution.

2 The challenge: Minimum Coverage by Convex Polygons

A suitable contest problem has a number of desirable properties.

The problem is of geometric nature.
The problem is of general scientific interest and has received previous attention.
Optimization problems tend to be more suitable than feasibility problems; in principle,
feasibility problems are also possible, but they need to be suitable for sufficiently fine-
grained scoring to produce an interesting contest.
Computing optimal solutions is difficult for instances of reasonable size.
This difficulty is of a fundamental algorithmic nature, and not only due to issues of
encoding or access to sophisticated software or hardware.
Verifying feasibility of provided solutions is relatively easy.

In this fifth year, a call for suitable problems was communicated in June 2022. In response,
a total of six interesting problems were proposed for the 2023 Challenge. These were evaluated
with respect to difficulty, distinctiveness from previous years, and existing literature and
related work. In the end, the Advisory Board selected the chosen problem. Special thanks go
to Dan Halperin (Tel Aviv University) who suggested this problem, motivated by applications
from the field of Robotics [4].

2.1 The problem
The specific problem that formed the basis of the 2023 CG Challenge was the following; see
Figure 1 for a simple example.

Figure 1 A possible instance, given by a (non-simple) polygonal region in the plane (left), and a
feasible cover by convex sets (right).
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Problem: Minimum Coverage by Convex Polygons
Given: Given a geometric region, P , in the plane, which may be a simple polygon or a
polygon with holes.
Goal: The task is to cover P with a collection, C1, . . . , Ck of convex polygons, each contained
within P , such that the number k of convex polygons in the cover is minimized.

Variants of this problem have a long history in Computational Geometry; in fact, a
duplicated logo of the annual SoCG conference (shown in Figure 2) illustrates that even
for a simple polygonal region with axis-parallel edges, a minimum convex cover may need
to employ vertices that do not lie on the arrangement of extensions of the edges of the
polygon; see the paper [15] by O’Rourke, the program chair of the first conference in 1985,
and https://www.computational-geometry.org/logo.html.

2.2 Related work

Even in the early years of computational geometry, convex covering gained much attention [13].
The same holds for the closely related problem of computing a minimum convex partition of
a polygon, i.e., a covering with convex polygons with pairwise disjoint interior. A variant of
it was considered in the very first Symposium on Computational Geometry [14]. At the time,
studying covering problems was motivated by applications in shape analysis and pattern
recognition, graphics, and VLSI design. Much of the focus was on the intrinsic complexity of
the problem, less so on designing algorithmic solutions.

O’Rourke was the first to show that the decision version of the problem is indeed
decidable [16]. He shows how to construct an existential formula over the reals which is true
if and only if the given polygon has a convex cover with k pieces. While polynomial-time
algorithms have been developed for the minimum convex partition problem for simple polygons
without holes [6], O’Rourke and Supowit [18] proved the minimum convex cover problem to be
NP-hard for polygons with holes. Several years later, Culberson and Reckhow [8] showed that
minimum convex cover by rectangles remains NP-hard, even for simple orthogonal polygons
without holes. Only recently, Abrahamsen [1] managed to prove ∃R-completeness of the
convex cover problem (even when covering a simple polygon by triangles), implying a negative
answer to the long-standing open problem of membership in NP, unless NP = ∃R. While
O’Rourke [15] already conjectured that optimal solutions may require irrational coordinates,
Abrahamsen [1] finally shows that Steiner points with irrational coordinates of arbitrarily
high algebraic degree can be necessary for the corners of the pieces in an optimal solution for
polygons with integral coordinates. This makes it unlikely that exact methods (such as Integer
Programming or Constraint Satisfaction) can be employed in a straightforward manner.

In the context of the Challenge, only convex polygonal pieces with rational coordinates
were allowed, both in order to avoid agreeing on a representation format for algebraic numbers
and in order to ease verification of submitted results. Even in this constrained version, Steiner
points with rational coordinates were still allowed. (We are not aware of any complexity results
that take this restriction into account for the general case of simple polygons with or without
holes.) Because the problem for general polygons was known to be NP-hard, special cases have
been considered, most prominently orthogonal polygons to be covered with rectangles, as in
the version that gave rise to the SoCG logo, Figure 2. However, the covering problem remains
NP-hard, even for orthogonal polygons with holes [8]; in the pursuit of polynomially solvable
versions of the problem, further special types of orthogonal polygons have been studied [12].

Besides restricting the allowed types of covering shapes from arbitrary convex polygons
to rectangles and axis-parallel rectangles, one can also consider triangles. However, Christ [7]
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Figure 2 The SoCG logo and minimum convex covering. A simple polygonal region (top left,
“Figure 2”) and a minimum convex cover consisting of nine convex polygons, one of which is a
diamond (i.e., a rotated square) that does not have a vertex on an edge of the region (top right,
“Figure 3”). Combining two such polygons into one (bottom left, “Figure 4”) results in a region for
which an optimal solution requires Steiner points that do not even lie on edge extensions (bottom
right, “Figure 5”). All images from O’Rourke [15].
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has shown that this version of the problem is also NP-hard, and Abrahamsen [1] shows it to
be ∃R-complete as well.

Instead of convex polygons, other non-convex types of polygons can be considered
for covering. If we consider star-shaped polygons, we are dealing with the Art Gallery
Problem [17], another ∃R-complete problem [2], for which optimal solutions may involve
complicated algebraic coordinates.

2.2.1 Simple heuristics
A first and simple heuristic approach is not to use Steiner points at all. Then the vertices of
all convex pieces must also be vertices of the polygon to be covered. Furthermore, it suffices
to consider only convex pieces C that are maximal in the sense that we cannot add another
polygon vertex v, such that the convex hull of C ∪ {v} is larger than C, but still contained
in P . Therefore, a straightforward approach is to construct all (or some sufficient subset
of) maximal convex polygons formed by the set of vertices of P , and then use some search
heuristic to select a subset covering P . For a more general approach, Steiner points of a
certain type can be added. O’Rourke [15] suggests using the endpoints of maximal extensions
of the edges of P within P . Continuing further, one may then add intersection points of
these extension segments at a next stage, or, more generally, intersection points of the lines
through pairs of Steiner points considered previously.

2.2.2 Approximate solutions
Another way to deal with a hard problem is to look at approximations. Eidenbenz and
Widmayer [11] show the minimum convex cover problem to be APX-hard and provide
an approximation algorithm with logarithmic approximation ratio. Their algorithm uses
discretization and dynamic programming.

There are different kinds of approximate solutions. Instead of approximating the minimum
number of convex polygons required to cover a polygon completely one can relax the covering
requirement as well and search for convex polygons that cover the polygon approximately,
e.g., by allowing a certain percentage of the area to stay uncovered or by considering
convex polygons that overlap the exterior to some small extent. In robotics applications [4],
connectivity-preserving approximate covering with convex pieces is often sufficient.

2.3 Instances
An important part of any challenge is the creation of suitable instances. If the instances are
easy to solve to optimality, the challenge becomes trivial; on the other hand, if instances
require a huge amount of computation for important common pre-processing steps or for
finding any decent solutions, the challenge may heavily favor teams that can afford better
computation equipment. The same is true if the set of instances becomes too large to manage
with a single (or few) computers.

We used the following generators to generate our instances; Figure 3 shows corresponding
examples of actual contest instances.

cheese The cheese generator’s goal is to create a relatively simple outer boundary containing
a large number of small holes. To this end, we start by generating hole center points
uniformly at random from a large rectangular region. We then choose a number of points on
the boundary uniformly at random from a small range of possible values, usually 3–6 points;
all these points are chosen uniformly at random in the close vicinity of the hole center.

CGT
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They are then turned into a tour by visiting the points in an initially random order, which
is turned into a polygon without self-intersections by applying a 2-opt step to reduce the
tour length as long as there are intersecting edges. To make sure holes do not intersect or
lie within other holes, each new hole is inserted into a 2D arrangement; if a hole intersects a
previously added one, it is ignored and a new hole is generated around a new starting point
instead. After the desired number of holes is generated, the outer boundary is generated by
taking the convex hull of all hole center points and shifting it outwards where intersections
with the holes make it necessary. Note that this may make the outer boundary non-convex.

ccheese The ccheese generator works like the cheese generator, but with the additional
goal of producing only convex holes; this is done by replacing each generated hole by
the convex hull of its points. The reason behind this modification is the following. In
particular for larger holes, non-convex vertices may often require a convex piece of their
own to cover them. In many cases, such convex pieces can be turned into a maximal
convex subregion of the feasible region in a unique way; this may inadvertently make
large parts of the instance easy to solve.

srpg Several instances are imported from the Salzburg Database of Polygonal Data [10].
The instances are taken from the database and normalized, so that all coordinates are
non-negative. If the coordinates are not all integral, we obtain a similar polygon with
integer coordinates by scaling all coordinates with a large factor and rounding them to
the nearest integer.
The srpg-family of instances is generated using their super random polygon generator.
Instances with prefix srpg_iso are orthogonal polygons; the prefix srpg_iso_aligned
indicates orthogonal polygons with integer coordinates which include many points with
the same x- or y-coordinates. The prefix srpg_iso_octa indicates octagonal polygons,
i.e., polygons where all angles are multiples of 45°. Finally, the prefixes srpg_smo and
srpg_smr indicate random polygons with smoothed corners, i.e., polygons for which
additional vertices are added to make corners smoother; smr indicates stronger smoothing
than smo.

fpg Like the srpg family, the fpg family of instances is taken from the Salzburg Database of
Polygonal Data [10], using the same approach to normalize and integralize the coordinates.
These instances are generated using the FPG (triangulation perturbation) generator,
which mutates an initial polygon, e.g., a regular polygon, by shifting its vertices while
maintaining the boundaries’ number of connected components. This often results in
polygons with skinnier parts than what is usual in the srpg family.

maze The maze generator generates polygons with a relatively simple outer boundary, into
which a large number of square obstacles are placed in a grid-like fashion, leaving long
corridors of free space. These corridors require the use of highly overlapping polyongs
to achieve good solutions. Some of the obstacles are then removed; others are slightly
perturbed by moving some vertices of the obstacles outwards. These perturbations are
meant to remove trivial approaches which cover each corridor with a single convex piece.

2.4 Evaluation

The contest was run on a total of 206 instances.
For many optimization problems, it is often considerably harder to find a solution with

the optimal value than it is to find a solution that comes close to the optimum, say with
value OPT + c for some small constant c.
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(a) Instance ccheese11045. (b) Instance cheese1516.

(c) fpg-poly_0000004900_h2. (d) srpg_iso_aligned_mc03255.

(e) srpg_iso_mc0001964. (f) maze_2534_250_05_01.

Figure 3 A selection of actual contest instances made by different generators; gray areas are holes.

CGT
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We suspected that this is the case for the contest problem as well. In order to reflect this
in the scoring of solutions, instead of a score that linearly depends on the number of polygons,
we introduced a quadratic scoring function. For an instance I, let B(I) be the number of
convex pieces required in the best solution submitted for that instance. Furthermore, let
T (I) be the number of convex pieces in the best solution of some team T for I. The score
ST (I) of team T for instance I is

ST (I) := B(I)2

T (I)2 .

As a consequence, doubling the number of convex pieces compared to the best known solution
cuts the score down to 0.25, and all teams that submitted a solution for some instance I that
was not beaten by any other team receive a score of 1 for I. Teams that did not submit any
valid solution for some instance I receive a default score of 0 for I, corresponding to a solution
with an infinite number of convex pieces. The total score ST =

∑
I ST (I) of each team T was

then calculated by summing the scores of T over all instances I. The winner of the contest
was the team with the highest score. In case of ties, the tiebreaker was set to be the time a
specific total score was obtained. As in previous years, this turned out to be unnecessary.

2.5 Categories

The contest was run in an Open Class, in which participants could use any computing
device, any amount of computing time (within the duration of the contest) and any team
composition. In the Junior Class, a team was required to consist exclusively of participants
who were eligible according to the rules of CG:YRF (the Young Researchers Forum of CG
Week), defined as not having defended a formal doctorate before 2021.

2.6 Server and timeline

The contest itself was run through a dedicated server at TU Braunschweig, hosted at https:
//cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2023/. It opened at 00:00 (UTC) on
September 30, 2022 with a number of test instances, with the full suite of contest instances
released on October 28, 2022 and closed at 24:00 (midnight, AoE), on January 27, 2023.

During the contest, the code used by the server to verify submissions was also made
available to the participants as a python package on the Python Package Index (PyPI)1.
Aside from trivial validity checks regarding encoding errors, the submissions were also
rigorously verified to be valid solutions to their respective instances. This includes checking
the convexity of all regions in each solution, checking that their union covers the entire area,
and that no extra area is covered. Using the CGAL [20] library, these checks are relatively
straightforward to implement; however, care must be taken when converting the floating-
point, integer or rational numbers submitted as solutions into CGAL’s exact number types.
The massive amount of necessary Boolean operations on various polygons turned out to be a
serious stress test and actually helped unveil a bug2 in CGAL’s new join-algorithm based
on polylines that has since been addressed.

1 See https://pypi.org/project/cgshop2023-pyutils/.
2 https://github.com/CGAL/cgal/issues/7235

https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2023/
https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2023/
https://pypi.org/project/cgshop2023-pyutils/
https://github.com/CGAL/cgal/issues/7235
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3 Outcomes

A total of 22 teams signed up for the competition, and 18 teams submitted at least one valid
solution. In the end, the leaderboard for the top 10 teams looked as shown in Table 1. There
were two teams (DIKU (AMW) and Shadoks) that were far ahead of all other participants.

Rank Team Score Junior
1 DIKU (AMW) 201.571
2 Shadoks 198.347
3 BX23 144.150
4 SmartLab 142.925 ✓

5 agr 122.400
6 rkPlayground 121.311 ✓

7 Karteflan 103.392 ✓

8 Ofir 103.223
9 pjgblt 103.127 ✓

10 cgI@tau 100.893
Table 1 The top 10 of the final score, rounded to three decimal places. Teams that satisfy the

criteria for being considered a junior team have a checkmark in the “Junior” column.

The progress over time of each team’s score can be seen in Figure 4; the best solutions for
all instances (displayed by score) can be seen in Figure 5. The top two teams were invited
for contributions in the 2023 SoCG proceedings, as follows.

1. Team DIKU (AMW): Mikkel Abrahamsen, William Bille Meyling, André Nusser [3].
2. Team Shadoks: Guilherme D. da Fonseca [9].
Details of their methods and the engineering decisions they made are given in their respective
papers. Their strengths and weaknesses are shortly evaluated in Figure 6. In the following,
we give a very brief description of their approaches.

Team DIKU (AMW) [3] bases their approach on a constrained Delaunay triangulation
of the vertices of the given polygon P along with some additional points, e.g., intersections
of extensions of the segments of P . On this triangulation, they compute a visibility graph,
which has a vertex for each triangle and an edge between pairs of triangles whose convex hull
is completely contained in P . They observe that cliques in this graph correspond to convex
polygons induced by the triangles in the clique. Sometimes, these induced polygons need not
be fully contained in P , but they assume that such situations are relatively rare. They then
use an existing implementation called ReduVCC [19] due to Strash and Thompson for the
vertex clique cover problem to compute a small number of cliques that cover all triangles.
Finally, they repair any convex pieces that are not fully contained in P and remove any
pieces that only cover parts of P that are already covered by other pieces.

Team Shadoks [9] had a different approach. On a high level, their approach consists of
generating a so-called collection C, which is a set of convex pieces that are contained in P

and together cover all of P . While it is important to not let C grow too large, the goal for
generating a good C is only to have a small solution S ⊆ C which also covers all of P . Given
a good C, Shadoks transform the task of finding a good solution S ⊆ C into a moderately
sized instance of the Set Cover problem, which is either solved optimally using an integer
programming solver or heuristically using simulated annealing; in order to do this, they
introduce witness points in P and enforce that each witness be covered by at least one set in

CGT
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Figure 4 Score progress of the top 10 teams over time. The scores are computed based on the
final submissions. Team Shadoks maintained the lead until it was surpassed in the last days by team
DIKU (AMW) by a small margin. Most teams only started submitting serious submissions in the
last two weeks. For many teams iterative improvements are visible.

S. They propose several methods to generate C; one is based on a modified version of the
Bron-Kerbosch algorithm [5] to enumerate maximal cliques, the other is a procedure they
call random bloating.

In order to evaluate what score a relatively simple, straightforward approach to the
problem would achieve, we implemented the following type of heuristic. Starting from a
constrained Delaunay triangulation of the vertices of the polygon P , we greedily merge
arbitrarily chosen faces of the current subdivision to form convex pieces with which to cover
P , until no more faces can be merged. Our implementation of this scheme would have
achieved a score of 85.3 and thus would have ranked 12th in the challenge.

This shows the massive advantage of the approaches of the top teams over simple,
straightforward methods; it also shows that the majority of actual contest participants
actually came up with algorithms that were able to beat such methods.

4 Conclusions

The 2023 CG:SHOP Challenge motivated a considerable number of teams to engage in
extensive optimization studies. The outcomes promise further insight into the underlying,
important optimization problem. Moreover, the considerable participation of junior teams
indicates that the Challenge itself motivates a great number of students and young researchers
to work on practical algorithmic problems.
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